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14 TOPOLOGICAL METHODSRade T. �Zivaljevi�

INTRODUCTIONA problem is solved or some other goal a
hieved by \topologi
al methods" if in ourarguments we appeal to the \form," the \shape," the \global" rather than \lo
al"stru
ture of the obje
t or 
on�guration spa
e asso
iated with the phenomenon weare interested in. This 
on�guration spa
e is typi
ally a manifold or a simpli
ial
omplex. The global properties of the 
on�guration spa
e are usually expressed interms of its homology and homotopy groups, whi
h 
apture the idea of the higher(dis)
onne
tivity of a geometri
 obje
t and to some extent provide an analysisproperly geometri
 or linear that expresses lo
ation dire
tly as algebra expressesmagnitude.1Thesis: Any global e�e
t that depends on the obje
t as a whole and that 
annot belo
alized is of homologi
al nature, and should be amenable to topologi
al methods.WHERE HAS TOPOLOGY BEEN APPLIED IN COMPUTER SCIENCE?The referen
es [ATCS℄ and [BEA+99℄ provide a broad overview of many 
urrentappli
ations of algebrai
 topology in 
omputer s
ien
e and vi
e versa as well as aninsight into promising new developments. The �eld is undergoing a rapid expansionand the following list should be understood as a sample of some of the main themesor aspe
ts of potential future resear
h.(a) Algebrai
 topology (AT) is viewed as a useful tool in solving 
ombinatorialor dis
rete geometri
 problems of relevan
e to 
omputing and the analysis ofalgorithms, [Mat02, Mata, �Ziv98℄.(b) Computational topology emerges [BEA+99℄ as a separate bran
h of 
omputa-tional geometry unifying topologi
al questions in 
omputer appli
ations su
has image pro
essing, 
artography, 
omputer graphi
s, solid modeling, meshgeneration, and mole
ular modeling [BEA+99, DEG99℄.(
) E�e
tive algebrai
 topology deals with algorithmi
 and 
omputational as-pe
ts of topology in
luding the re
ognition problem (3-manifolds), e�e
tive
omputations of topologi
al invariants (homology, homotopy groups, knot in-variants), et
. [Ser℄.(d) Combinatorial proofs of statements originally obtained by non
onstru
tivetopologi
al methods were dis
overed [Matb, Zie02℄.(e) The methods of AT 
an provide qualitative and shape information unavailableby the use of other methods. For example AT provides a tool for visualization1A dream of G.W. Leibniz expressed in a letter to C. Huygens dated 1697; see [Bre95, Chap. 7℄.209
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and feature identi�
ation in highly 
omplex empiri
al data, e.g., in biogeom-etry [BioG℄.(f) AT provides a useful framework for analyzing problems in distributed and
on
urrent 
omputing [HR95, HR00℄.HOW IS TOPOLOGY APPLIED IN DISCRETE GEOMETRIC PROBLEMS?In this 
hapter we put some emphasis on the role of (equivariant) topologi
al meth-ods in solving 
ombinatorial or dis
rete geometri
 problems that have proven to beof relevan
e for 
omputational geometry and 
omputational mathemati
s in gen-eral. The versatile 
on�guration spa
e/test map s
heme was developed in numerousresear
h papers over the years and formally 
odi�ed in [�Ziv98℄. Its essential featuresare the following two steps:Step 1: The problem is rephrased in topologi
al terms.The problem should give us a 
lue how to de�ne a \natural" 
on�gurationspa
e X and how to rephrase the question in terms of zeros or 
oin
iden
es ofthe asso
iated test maps. Alternatively the problem may be divided into severalsubproblems, in whi
h 
ase one is often led to the question of when the subsets ofX 
orresponding to the various subproblems have nonempty interse
tion.Step 2: A standard topologi
al te
hnique is used to solve the rephrasedproblem.The topologi
al te
hnique that is most frequently used in dis
rete geometri
problems is based on the te
hnique of interse
ting homology 
lasses and on gener-alized Borsuk-Ulam theorems.14.1 THE CONFIGURATION SPACE/TEST MAP PARADIGMGLOSSARYCon�guration spa
e/test map s
heme (CS/TM): A very useful and gen-eral s
heme for proving 
ombinatorial or geometri
 fa
ts. The problem is re-du
ed to the question of showing that there does not exist a G-equivariant mapf : X ! V n Z (Se
tion 14.5) where X is the 
on�guration spa
e, V the testspa
e, and Z the test subspa
e asso
iated with the problem, while G is a natu-rally arising group of symmetries.Con�guration spa
e: In general, any topologi
al spa
e X that parameterizes a
lass of 
on�gurations of geometri
 obje
ts (e.g., arrangements of points, lines,fans, 
ags, et
.) or 
ombinatorial stru
tures (trees, graphs, partitions, et
.).Given a problem P , an asso
iated 
on�guration or 
andidate spa
e XP 
olle
tsall geometri
 
on�gurations that are (reasonable) 
andidates for a solution of P .Test map and test spa
e : A map t : XP ! V from the 
on�guration spa
e XPinto the so-
alled test spa
e V that tests the validity of a 
andidate p 2 XP as
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al methods 211a solution of P . The �nal ingredient is the test subspa
e Z � V , where p 2 Xis a solution to the problem if and only if t(p) 2 Z. Usually V �= Rd while Z isjust the origin f0g � V or more generally a linear subspa
e arrangement in V .Equivariant maps: The �nal ingredient in the CS/TM-s
heme is a group G ofsymmetries that a
ts on both the 
on�guration spa
e XP and the test spa
eV (keeping the test subspa
e Z invariant). The test map t is always assumedG-equivariant, i.e., t(g � x) = g � t(x) for ea
h g 2 G and x 2 XP . Some of themethods and tools of equivariant topology are outlined in Se
tion 14.5.EXAMPLE 14.1.1 (Y. Soibelman [Soi02℄)Suppose that � is a metri
 on R2 that indu
es the same topology as the usual Eu-
lidean metri
. In other words we assume that for ea
h sequen
e of points (xn)n�0,�(xn; x0)! 0 if and only if jxn�x0j ! 0. Then there exists a �-equilateral triangle,i.e., a triple (a; b; 
) of distin
t points in R2 su
h that �(a; b) = �(b; 
) = �(
; a).This is our �rst example that illustrates the CS/TM-s
heme. The 
on�gurationspa
eX should 
olle
t all 
andidates for the solution, so a �rst, \naive" 
hoi
e is thespa
e of all (ordered) triples (x; y; z) 2 R2. Of 
ourse we 
an immediately rule outsome obvious nonsolutions, e.g., degenerate triangles (x; y; z) su
h that at least oneof numbers �(x; y); �(y; z); �(z; x) is zero. (This illustrates the fa
t that in generalthere may be several possible 
hoi
es for a 
on�guration spa
e asso
iated to theinitial problem.) Our 
hoi
e is X := R2 n � where � := f(x; x; x) j x 2 R2g. A\triangle" (x; y; z) 2 X is �-equilateral if and only if (�(x; y); �(y; z); �(z; x)) 2 Z,where Z := f(u; u; u) 2 R3 j u 2 Rg. Hen
e a test map t : X ! R3 is de�ned byt(x; y; z) = (�(x; y); �(y; z); �(z; x)), the test spa
e is V = R3, and Z � R3 is theasso
iated test subspa
e. A triangle fx; y; zg, viewed as a set of verti
es, is in generallabeled by six di�erent triples in the 
on�guration spa
e X . This redundan
y is amotivation for introdu
ing the group of symmetries G = S3, whi
h a
ts on both the
on�guration spa
eX and the test spa
e V . The test map t is 
learly S3-equivariant.If the image of t is disjoint from Z, there arises an S3-equivariant map from X toV n Z. If S1 is the unit 
ir
le in a 2-plane in V = R3 orthogonal to Z �= R1, thenproje
tion and normalization give an S3-equivariant map � : V nZ ! S1. The unit3-sphere S3 in a 4-plane orthogonal to � is S3-invariant, hen
e the in
lusion map� : S3 ! X is S3-equivariant. Finally, the 
omposition f = � Æ t Æ � : S3 ! S1 isalso S3-equivariant, whi
h leads to a 
ontradi
tion. One way to prove this is to useTheorem 14.5.1, sin
e the sphere S3 is 
learly 1-
onne
ted.Here is another example of how topology 
omes into play and proves useful ingeometri
 and 
ombinatorial problems. The 
on�guration spa
e asso
iated to thenext problem is a 2-dimensional torus T 2 �= S1 � S1. This time, however, the testmap is not expli
itly given. Instead, the problem is redu
ed to 
ounting interse
tionpoints of two \test subspa
es" in T 2.EXAMPLE 14.1.2 A wat
h with two equal handsA wat
h was manufa
tured with a defe
t so that both hands (minute and hour)are identi
al. Otherwise the wat
h works well and the question is to determine thenumber of ambiguous positions, i.e., the positions for whi
h it is not possible todetermine the exa
t time.First of all we observe that every position of a hand is determined by an angle
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on�guration spa
e of the two hands is a torus! 2 [0; 2�℄, so that the 
on�guration spa
e of all possible positions of a hand ishomeomorphi
 to the unit 
ir
le S1. Two independent hands have the 2-dimensionaltorus T 2 �= S1 � S1 as their 
on�guration spa
e, i.e., the spa
e representing allallowed states or positions of the system. A usual model of a torus is a squareor a re
tangle (see Figure 14.1.1) with the opposite sides glued together. If �
orresponds to the minute hand and ! is the 
oordinate of the hour hand, then thefa
t that the �rst hand is twelve times faster is re
orded by the equation � = 12!.This equation des
ribes a 
urve �1 on the torus T 2, whi
h is just a 
ir
le winding12 times in the dire
tion of the � axis while it winds only on
e in the dire
tionof ! axis. The 
urve �1 is represented in our pi
ture as the union of 12 linesegments, seven of them indi
ated in Figure 14.1.1. If the hands 
hange pla
esthen the 
orresponding 
urve �2 has equation ! = 12 �. The ambiguous positionsare exa
tly the interse
tion points of these two 
urves (ex
ept those that belong tothe diagonal � := f(�; !) j � = !g, when it is still possible to tell the exa
t timewithout knowing whi
h hand is for hours and whi
h for minutes). The reader 
annow easily �nd the number of these interse
tion points and 
ompute that there are143 of them in the interse
tion �1 \ �2, and 11 in the interse
tion �1 \ �2 \ �,whi
h shows that there are all together 132 ambiguous positions.REMARK 14.1.3Let us note that the \wat
h with equal hands" problem redu
es to 
ounting pointsor 0-dimensional manifolds in the interse
tion of two 
ir
les, viewed as 1-dimensionalsubmanifolds of the 2-dimensional manifold T 2. More generally, one may be inter-ested in how many points there are in the interse
tion of two or more submani-folds of a higher-dimensional ambient manifold. Topology gives us a versatile toolfor 
omputing this and mu
h more, in terms of the so-
alled interse
tion produ
t� _ � of homology 
lasses � and � in a manifold M . This interse
tion produ
t is,via Poin
ar�e duality, equivalent to the \
up" produ
t, and has the usual properties[Mun84℄. In our Example 14.1.2, keeping in mind that a _ b = � b _ a for all1-dimensional 
lasses, and in parti
ular that a _ a = 0 if dim (a) = 1, we have[�1℄ _ [�2℄ = ([�℄ + 12[!℄) _ ([!℄ + 12[�℄) = [�℄ _ [!℄ + 12[!℄ _ [!℄ + 12[�℄ _[�℄ + 144[!℄ _ [�℄ = 143[!℄ _ [�℄ and, taking the orientation into a

ount, we
on
lude that the number of interse
tion points is 143.
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al methods 21314.2 PARTITIONS OF MASS DISTRIBUTIONSProblems of partitioning mass distributions in the plane, 3-spa
e, or spa
es of higherdimension form the �rst 
ir
le of dis
rete geometri
 problems where topologi
almethods have traditionally been applied with great su

ess.An (open) ham sandwi
h is a 
olle
tion of three measurable sets in R3, repre-senting a sli
e of bread, a sli
e of ham, and a sli
e of 
heese. It turns out that therealways exists a plane simultaneously halving all three measurable sets or, in otherwords, that a ham sandwi
h 
an be 
ut fairly into two pie
es by a single straight
ut. Suppose, on the other hand, that you want to split an irregularly shaped sli
eof pizza with a hungry friend who is supposed to divide the pizza into two pie
es bya straight knife-
ut, but who 
an 
ut anywhere he likes. You are allowed to markyour pie
e in advan
e by spe
ifying a single point that will lie in your pie
e. Then,if you are very 
areful about marking your pie
e, you 
an 
ount on at least one thirdof the pizza. These two results are instan
es of the ham sandwi
h theorem and the
enter point theorem whi
h, together with their relatives, often require topologi
almethods in their proofs.GLOSSARYMeasure: An abstra
t fun
tion � de�ned on a 
lass of sets that has all the formalproperties (additivity, positivity) of the usual volume or area fun
tions.Measurable set: Any set in the domain of the fun
tion �.Mass distribution and density fun
tion: A density fun
tion is an integrablefun
tion f : Rd ! [0;+1) representing the density of a \mass distribution"(measure) on Rd. The measure � arising this way is de�ned by �(A) := RA f dx.Halving hyperplane: A hyperplane that simultaneously bise
ts a family of mea-surable sets.Grassmann and Stiefel manifolds: The Grassmann manifold Gk(Rn) of allk-dimensional linear subspa
es of Rn and the Stiefel manifold Vk(Rn) of all or-thonormal k-frames in Rn are frequently used in the 
onstru
tion of 
on�gurationspa
es asso
iated to measure partitioning problems.14.2.1 THE HAM SANDWICH THEOREMGiven a 
olle
tion of d measurable sets (mass distributions, �nite sets) in Rd, theproblem is to simultaneously bise
t all of them by a single hyperplane. Often ameasurable set is a geometri
 obje
t A � Rd, say a polytope, whose measure issimply its volume vol A. More generally, a measurable set A is an arbitrary subsetof Rd if it is 
lear from the 
ontext what we mean by its \measure" �(A). Typi
ally,A is a Lebesgue-measurable set and �(A) = m(A) its Lebesgue measure whi
h,in the usual 
ases, redu
es to the measure vol des
ribed above. More generally, iff : Rd ! R+ is an integrable density fun
tion, then �(A) := RA f dm = RRd f�A dmis the measure or the mass distribution asso
iated with the fun
tion f , where �Ais the 
hara
teristi
 fun
tion of A (1 on A, 0 otherwise). An important spe
ial
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ase arises if f = �B for a Lebesgue-measurable set B, where �(A) = m(A \ B).Finally, if S � Rd is a �nite set, then �(A) := jA \ Sj is the so-
alled 
ountingmeasure indu
ed by the set S. All of these examples are subsumed by the 
aseof a positive, �-additive Borel measure �. This means that � is de�ned on a �-algebra F of subsets of Rd that in
ludes all 
losed halfspa
es and other sets thatarise naturally in geometri
 problems. The reader should, in prin
iple, not haveany diÆ
ulty reformulating any of the following results for whatever spe
ial 
lassof measures she may be interested in.THEOREM 14.2.1 Ham Sandwi
h TheoremLet �1; �2; : : : ; �d be a 
olle
tion of measures (mass distributions, measurable sets,�nite sets) in the sense above. Then there exists a hyperplane H su
h that for alli = 1; : : : ; d, �i(H+) � 1=2�i(Rd) and �i(H�) � 1=2�i(Rd), where H+ and H�are the 
losed halfspa
es asso
iated with the hyperplane H.In the spe
ial 
ase where �(H) = 0, i.e., where the hyperplane itself has measurezero, H is 
alled a halving hyperplane sin
e �i(H+) = �i(H�) = 1=2�i(Rd) forall i. A halving hyperplane H is also 
alled a \ham sandwi
h 
ut," for the reasonsnoted above.TOPOLOGICAL BACKGROUNDThe topologi
al result lying behind the ham sandwi
h theorem is the Borsuk-Ulamtheorem, [Ste85, Mata℄. The proof of the ham sandwi
h theorem histori
ally marksone of the �rst appli
ations of the CS/TM-s
heme, with the (d�1)-sphere as the
on�guration spa
e, Rd as the test spa
e, and G = Z2 as the group of symmetriesasso
iated to the problem. Given a 
olle
tion fAigdi=1 of d measurable sets, the testmap t : Sd�1 ! Rd is de�ned by t(e) = (�1; : : : ; �d), with �i determined by the
ondition that Hi := fx 2 Rd j hx; ei = �ig is a halving hyperplane for the meas-urable set Ai. The test spa
e is the diagonal Z := f(�; : : : ; �) 2 Rd j � 2 Rg. Thetest map t is obviously \odd", or Z2-equivariant, in the sense that t(�e) = �t(e).THEOREM 14.2.2 Borsuk-Ulam TheoremFor every 
ontinuous map f : Sn ! Rn from an n-dimensional sphere into n-dimensional Eu
lidean spa
e, there exists a point x 2 Sn su
h that f(x) = f(�x).An important spe
ial 
ase of the Borsuk-Ulam theorem arises if f is an oddmap. The 
on
lusion is that a 
ontinuous odd map must have a zero on the sphere,i.e., f(x) = 0 for some x 2 Sd. This is pre
isely the reason why the test map tfor the ham sandwi
h theorem has the property t(e) 2 Z for some e 2 Sd�1. Notethat the general Borsuk-Ulam theorem follows from the spe
ial 
ase if the latter isapplied to the map � : Sd ! Rd given by �(x) = f(x)� f(�x).There is a di�erent topologi
al approa
h to the ham sandwi
h theorem 
loserto the earlier example about a wat
h with two indistinguishable hands. Here wemention only that the role of the torus T 2 is played by a manifoldM representing allhyperplanes in Rd (the 
on�guration spa
e), while the 
urves �1 and �2 are repla
edby suitable submanifolds Ni of M , one for ea
h of the measures �i; i = 1; : : : ; d.Ni is de�ned as the spa
e of all halving hyperplanes for the measurable set Ai.
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al methods 215APPLICATIONS AND RELATED RESULTSLet S1; : : : ; Sd be a 
olle
tion of �nite sets, 
alled \
olors," in Rd. Assume that thesize of ea
h of these sets is n and that the points are all in general position. Then,a

ording to Akiyama and Alon (see [B�ar93℄), the ham sandwi
h theorem impliesthat there exists a partition of S := Sdi=1 Si into n nonempty, pairwise disjoint setsD1; : : : ; Dn that are multi
olored in the sense that jDi \ Sj j = 1 for all i and j,su
h that the simpli
es 
onv D1; : : : ; 
onv Dn are pairwise disjoint.14.2.2 THE CENTER POINT THEOREMTHEOREM 14.2.3 Center Point TheoremLet A � Rd be a Lebesgue-measurable subset of Rd or, more generally, one of themeasures � des
ribed prior to Theorem 14.2.1. Then there exists a point x 2 Rdsu
h that for every 
losed halfspa
e P � Rd, if x 2 P thenvol(P \A) � vol(A)d+ 1 :When formulated for a more general measure �, the result guarantees that �(P ) ��(Rd)=(d+ 1) for every 
losed halfspa
e P 3 x.TOPOLOGICAL BACKGROUNDIf the Borsuk-Ulam theorem is responsible for the ham sandwi
h theorem, thenR. Rado's 
enter point theorem 
an be seen as a 
onsequen
e of another well-knowntopologi
al result, Brouwer's �xed point theorem. Note that the usual formulationabout self-maps f : K ! K generalizes easily to the following formulation.THEOREM 14.2.4 Brouwer's Fixed Point TheoremLet K be a 
ompa
t, 
onvex body in Rn. Suppose f : K ! Rn is a 
ontinuous mapsu
h that for ea
h x 2 K the image f(x) belongs to the supporting 
one of K atx; 
onex(K) := S��0(x+ �(K � x)). Then f(x) = x for some x 2 K.Very often it is more 
onvenient to use Kakutani's theorem, whi
h is a gener-alization of Brouwer's theorem to \multivalued fun
tions" f : B ! Rn.The 
enter point theorem is dedu
ed from Brouwer's theorem roughly as fol-lows. Let x 2 B, where B is a \large" ball 
ontaining the set A. If x is not a 
enterpoint, then there is a ve
tor e 2 Sd�1 pointing in a dire
tion in whi
h x 
an bemoved to make it 
loser to being one. In this way we de�ne a fun
tion x 7! f(x),and a �xed point, i.e., a point that doesn't need to be moved, is a 
enter point.Re
all that the 
enter point theorem was originally dedu
ed from Helly's the-orem about interse
ting families of 
onvex sets, whi
h also has several topologi
alrelatives.
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APPLICATIONS AND RELATED RESULTSThe �rst proof of the 
enter point theorem (R. Rado) was based on Helly's theo-rem. For this reason, it is often viewed as a measure-theoreti
 equivalent of Helly'stheorem.As noted by Miller and Thurston (see [MTTV97, MTTV98℄), the 
enter pointtheorem and the Koebe theorem on the disk representation of planar graphs 
an beused to prove the existen
e of a small separator for a planar graph, a result provedoriginally (by Lipton and Tarjan) by di�erent methods.The regression depth rdP(H) of a hyperplane H relative to a 
olle
tion Pof n points in Rd is the minimum number of points that H must pass through inmoving to the verti
al position. Dually, given an arrangement H of n hyperplanesin Rd, the regression depth rdH(x) of a point x relative to H is the smallest k su
hthat x 
annot es
ape to in�nity without 
rossing (or moving parallel to) at leastk hyperplanes. The problem of �nding a point (resp. hyperplane) with maximumregression depth relative to H (resp. P) is shown in [AET00℄ to be intimately
onne
ted with the problem of �nding 
enter points. The main result (
on�rminga 
onje
ture of Rousseeuw and Hubert) is that there always exists a point withregression depth dn=(d+ 1)e; 
f. Chapter 57 of this Handbook.14.2.3 CENTER TRANSVERSAL THEOREMTHEOREM 14.2.5 Center Transversal TheoremLet A0; A1; : : : ; Ak; 0 � k � d � 1, be a 
olle
tion of Lebesgue-measurable sets inRd or, more generally, let �0; �1; : : : ; �k be a sequen
e of measures. Then thereexists a k-dimensional aÆne subspa
e D � Rd su
h that for every 
losed halfspa
eH(v; �) := fx 2 Rd j hx; vi � �g and every i 2 f0; 1; : : : ; kg,D � H(v; �) =) m(Ai \H(v; �)) � m(Ai)d� k + 1 :If formulated for a sequen
e �0; : : : ; �k of more general measures, the result guar-antees that �i(H(v; �)) � �i(Rd)=(d� k + 1) for all i and all H(v; �) � D.TOPOLOGICAL BACKGROUNDThe 
enter transversal theorem 
ontains the ham sandwi
h and 
enter point theo-rems as two boundary 
ases [ZV90℄. The topologi
al prin
iple that is at the rootof this result should be strong enough for this purpose. This result has severalin
arnations. One of them, in the language of the CS/TM-s
heme, is a theorem ofE. Fadell and S. Husseini [FH88℄ that 
laims the nonexisten
e of a Z�k2 -equivariantmap f : Vn;k ! (Rk)n�k nf0g from the Stiefel manifold of all orthonormal k-framesin Rn to the sum of n � k 
opies of Rk. The group Z�k2 
an be identi�ed withthe group of all diagonal matri
es in SO(k) and its a
tion on Rk is indu
ed by theobvious a
tion of SO(k). A related result [FH88, ZV90℄ is that the ve
tor bun-dle ��(n�k)k does not admit a nonzero, 
ontinuous 
ross-se
tion, where �k is thetautologi
al k-plane bundle over the Grassmann manifold Gk(Rn).
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al methods 217APPLICATIONS AND RELATED RESULTSThe following Helly-type transversal theorem, due to Dol'nikov (see [E
k93℄), isa 
onsequen
e of the same topologi
al prin
iple that is at the root of the 
en-ter transversal theorem. Moreover, the 
enter transversal theorem is related toDol'nikov's result in the same way that the 
enter point theorem is related toHelly's theorem.THEOREM 14.2.6Let K0; : : : ;Kk be families of 
ompa
t 
onvex sets. Suppose that for every i, and forea
h k-dimensional subspa
e V � Rd, there exists a translate Vi of V interse
tingevery set in Ki. Then there exists a 
ommon k-dimensional transversal of the familyK := Ski=0 Ki, i.e., there exists an aÆne k-dimensional subspa
e of Rd interse
tingall the sets in K.Let K = fK0; :::;Kkg be a family of 
onvex bodies in Rn, 1 � k � n� 1. Thenan aÆne l-plane A � Rn is 
alled a 
ommon maximal l-transversal of K ifm(Ki \ A) � m(Ki \ (A + x)) for ea
h i 2 f0; :::; kg and ea
h x 2 Rn, where mis l-dimensional Lebesgue measure in A and A + x, respe
tively. It was shown in[MVZ01℄ that, given a family K = fKigki=0 of 
onvex bodies in Rn (k < l), the setCl(K) of all 
ommon maximal l-transversals of K has to be \large" from both themeasure-theoreti
 and the topologi
al point of view. Here again one uses the sametopologi
al prin
iple responsible for all results in this se
tion together with someintegral geometry 
al
ulations to show that a 
ohomologi
ally \big" subspa
e ofthe Grassmann manifold Gk(Rn) has to be large also in a measure-theoreti
 sense.14.2.4 EQUIPARTITION OF MASSES BY HYPERPLANESA measurable set A � R3 
an be partitioned by three planes into 8 pie
es of equalmeasure. This is an instan
e of the general problem of 
hara
terizing all triples(d; j; k) su
h that for any j mass distributions (measurable sets) in Rd, there existk hyperplanes, k � d, su
h that ea
h of the 2k \orthants" 
ontains the fra
tion1=2k of ea
h of the masses. Su
h a triple (d; j; k) will be 
alled admissible. Forexample, the ham sandwi
h theorem implies that (d; d; 1) is admissible. It is known(E. Ramos, [Ram96℄) that d � j(2k � 1)=k is a ne
essary 
ondition and d � j2k�1a suÆ
ient one for a triple (d; j; k) to be admissible. Ramos's method yields manyinteresting results in lower dimensions, in
luding the admissibility of the triples(9; 3; 3), (9; 5; 2), and (5; 1; 4). The most interesting spe
ial 
ase that still seemsto be out of rea
h is the triple (4; 1; 4). The key idea in these proofs is to use, forthis purpose, a spe
ially designed, generalized form of the Borsuk-Ulam theoremfor 
ontinuous, \even-odd" maps of the form f : Sd�1 � : : :� Sd�1 ! Rl.APPLICATIONS AND RELATED RESULTSA

ording to [Mata℄, an early interest of 
omputer s
ientists in partitioning massdistributions by hyperplanes was stimulated in part by geometri
 range sear
hing ;
f. Chapter 36 of this Handbook. As noted by Matou�sek, the 
lassi
al mass parti-tioning results were eventually superseded by random sampling and related results.However, one still wonders about the possible impa
t of a positive answer to the
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following 
onje
ture (a spe
ial 
ase of the 
onje
ture that (4; 1; 4) is admissible) tothe 
onstru
tion and 
omplexity of geometri
 algorithms.CONJECTURE 14.2.7For ea
h 
olle
tion of 16 distin
t points A1; : : : ; A16 in R4, there exist 4 hyperplanesH1; : : : ; H4 su
h that ea
h of the asso
iated 16 open orthants 
ontains at most oneof the given points.It is known that the answer to the 
onje
ture is positive if the points aredistributed along a 
onvex 
urve in R4 (a 
urve in Rm is 
onvex if, like themoment 
urve, it interse
ts ea
h hyperplane in at most m distin
t points). Thisspe
ial 
ase of the 
onje
ture follows [Ram96℄ from the existen
e of uniform Gray
odes on 4-dimensional 
ubes. Re
all that a uniform Gray 
ode on a k-dimensional
ube is a Hamiltonian 
ir
uit on the graph of all edges of the 
ube that is balan
edin the sense that it uses the same number of edges from ea
h of k parallel 
lasses.14.2.5 RADIAL PARTITIONS BY POLYHEDRAL FANSAn old result of R. Bu
k and E. Bu
k [BB49℄ says that for ea
h 
ontinuous massdistribution in the plane, there exist three 
on
urrent lines l1; l2; l3 � R2 thatpartition R2 into six se
tors of equal measure. It is natural to sear
h for higherdimensional analogs of this result.Suppose that Q � Rd is a 
onvex polytope and assume that the origin O 2 Rdbelongs to the interior int(Q) of Q. Let fFigki=1 be the 
olle
tion of all fa
ets of Q.Let F := fan(Q) be the asso
iated fan, i.e., F = fC1; : : : ; Ckg where Ci = 
one(Fi)is the 
onvex 
losed 
one with vertex O generated by Fi.THEOREM 14.2.8 [Mak01℄Let Q be a regular dode
ahedron with the origin O 2 R3 as its bary
enter. Thenfor any 
entrally symmetri
, 
ontinuous mass distribution � on R3, there exists alinear map L 2 GL(3;R) su
h that�(L(C1)) = �(L(C2)) = : : : = �(L(Ck)):Makeev a
tually shows in [Mak01℄ that L 
an be found in the set of all matri
esof the form a � t, where t is an upper triangular matrix and a 2 GL(3;R) is a matrixgiven in advan
e. In an earlier paper (see [Mak98℄) he showed that a radial partitionby a fan determined by the fa
ets of a 
ube always exists for an arbitrary measure inR3. Moreover, he shows in [Mak01℄ that a result analogous to Theorem 14.2.8 alsoholds for rhombi
 dode
ahedra. Re
all that the rhombi
 dode
ahedron U3 is thepolytope bounded by twelve planes, ea
h 
ontaining an edge of a 
ube and parallelto one of the great diagonal planes. A higher dimensional analogue of the rhombi
dode
ahedron is the polytope Un in Rn des
ribed as the dual of the di�eren
e bodyof a regular simplex.PROBLEM 14.2.9Let T � Rn be a regular simplex and Q := T�T the asso
iated \di�eren
e polytope."Let Un := QÆ be the polytope polar to Q. Clearly Un is a 
entrally symmetri
polytope with n2 + n fa
ets Fi; i = 1; : : : ; n2 + n. Let fKign2+ni=1 be the asso
iated
oni
al disse
tion of Rn, where Ki := 
one(Fi). Is it true that for any 
ontinuous
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al methods 219mass distribution � on Rn there exists a nondegenerate aÆne map A : Rn ! Rnsu
h that �(A(K1)) = �(A(K2)) = : : : = �(A(Kn2+n)) ?The following result of Vre�
i
a and �Zivaljevi�
 is an example of a radial partitionresult for a single measure in Rn with ratios pres
ribed by a positive ve
tor �.THEOREM 14.2.10 [VZ01℄Let � � Rn be a nondegenerate simplex with O 2 int(�). Suppose that � is a
ontinuous mass distribution on Rn, and let � = (�0; : : : ; �n) be a given positiveve
tor su
h that �0 + : : : + �n = 1. Then there exists a ve
tor v 2 Rn su
h that�(v +Ki) = �i �(Rn) for ea
h i = 0; : : : ; n, where F = fan(�) = fKigni=0 is theradial fan asso
iated to �.14.2.6 EQUIPARTITIONS BY WEDGELIKE CONESThe 
enter transversal theorem is a 
ommon generalization of the ham sandwi
htheorem and the 
enter point theorem. There is another general statement ex-tending the ham sandwi
h theorem that, as a spe
ial boundary 
ase, in
ludes theequipartition 
ase of Theorem 14.2.10.THEOREM 14.2.11 [VZ92℄Let � := 
onv(faigmi=0) be a regular simplex of dimension m � d and let P := a� �be its aÆne hull. Then there is a disse
tion D(�) = fDigmi=0 of Rd into m + 1wedgelike 
ones, where Di := P? � 
one(
onv(fajgj 6=i)).CONJECTURE 14.2.12Let �0; : : : ; �k be a family of 
ontinuous mass distributions (measures), 0 � k �d � 1, de�ned on Rd. Then there exists a (d�k)-dimensional regular simplex �su
h that for the 
orresponding disse
tion, D(�), for some x 2 Rd, and for all i; j,�i(x+Dj) � �i(Rd)d� k + 1 :This 
onje
ture is denoted in [VZ92℄ by B(d; k). Theorem 14.2.10 impliesB(d; 0), and the ham sandwi
h theorem is B(d; d � 1). The 
onje
ture is also
on�rmed in the 
ase B(d; d�2) for all d. Moreover, there exists a natural topolog-i
al 
onje
ture implying B(d; k) that is 
losely related to the analogous statementneeded for the 
enter transversal theorem. This statement, denoted in [VZ92℄ byC(d; k), in the spirit of the CS/TM-s
heme, essentially 
laims that there does notexists a Zk+1-equivariant map from the Stiefel manifold Vk(Rn) to the unit sphereS(V ) in an appropriate Zk+1-representation V .14.2.7 PARTITIONS BY CONVEX SETSCONJECTURE 14.2.13Let n and d be integers with n; d � 2. Assume that �1; : : : ; �d are 
ontinuous massdistributions su
h that �1(Rd) = : : : = �d(Rd) = n. Then there exists a partition of
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Rd into n sets C1; : : : ; Cn su
h that the interiors int(Ci) are 
onvex sets and that�i(Ci) = 1 for ea
h i = 1; : : : ; n.This 
onje
ture was formulated in [KK99℄ by A. Kaneko and M. Kano forthe 
ase d = 2. Kaneko and Kano originally formulated the 
onje
ture for �nitesets rather than for 
ontinuous mass distributions, but this is not essential. Notethat the 
ase n = 2 is true by the ham sandwi
h theorem. The 
ase d = 2 wasindependently established by S. Bespamyatnikh, D. Kirkpatri
k, and J. Snoeyink,by T. Sakai, and by H. Ito, H. Uehara, and M. Yokoyama; see [BM01℄ for additionalinformation.14.2.8 PARTITIONS BY k-FANS IN PRESCRIBED RATIOSThe 
onje
ture of Kaneko and Kano (the 
ase d = 2; n = 3) motivated I. B�ar�anyand J. Matou�sek in [BM01, BM02℄ to study general 
oni
al partitions of planar orspheri
al measures in pres
ribed ratios. We assume, in the following statements,that all measures are 
ontinuous mass distributions.An arrangement of k semilines in the Eu
lidean (proje
tive) plane or on the2-sphere is 
alled a k-fan if all semilines start from the same point. A k-fan is an�-partition for a probability measure � if �(�i) = �i for ea
h i = 1; :::; k, wheref�igki=1 are 
oni
al se
tors asso
iated with the k-fan and � = (�1; :::; �k) is a givenve
tor. The set of all � = (�1; :::; �m) su
h that for any 
olle
tion of probabilitymeasures �1; :::; �m there exists a 
ommon �-partition by a k-fan is denoted byAm;k. It was shown in [BM01℄ that the interesting 
ases of the problem of existen
eof �-partitions are (k;m) = (2; 3); (3; 2); (4; 2).CONJECTURE 14.2.14Suppose that (k;m) is equal to (2; 3); (3; 2) or (4; 2)g. Then � 2 Ak;m if and only if�1 + : : :+ �m = 1 and �i > 0 for ea
h i = 1; : : :m:The only known elements in A4;2 are, up to a permutation of 
oordinates,( 14 ; 14 ; 14 ; 14 ) and ( 15 ; 15 ; 15 ; 25 ). They were dis
overed by B�ar�any and Matou�sek by aningenious appli
ation of the CS/TM s
heme [BM01, BM02℄. From this B�ar�any andMatou�sek dedu
ed that f( 13 ; 13 ; 13 ); ( 12 ; 14 ; 14 )g [ f(p5 ; q5 ; r5 ) j p; q; r 2 N+; p+ q + r =5g � A3;2.Conje
ture 14.2.14 was 
on�rmed in full in the 
ase (k;m) = (2; 3) by R. �Zi-valjevi�
 in [�Ziv02℄. Building on the CS/TM s
heme of B�ar�any and Matou�sek,he dedu
ed the result from the fa
t that under mild 
onditions there does notexist a Q4n-equivariant map f : S3 ! V n A(�), where A(�) is a Q4n-invariant,linear subspa
e arrangement in a Q4n-representation V, and Q4n is the generalizedquaternion group. This fa
t is in turn established by showing that an appropriateobstru
tion in the group 
1(Q4n) of Q4n-bordisms does not vanish.14.2.9 OTHER EQUIPARTITIONSThere are other types of partitions of mass distributions. A \
obweb partitiontheorem" of S
hulman (see [Mata℄) guarantees an equipartition of a plane massdistribution into 8 pie
es by an arrangement of lines resembling a 
obweb.

Administrator
Sticky Note
This paragraph was later removed and did not appear in the published version.
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al methods 221A result of Paterson (see [Mata℄) is an interesting example of a ham sandwi
h-type theorem that deals with partitions of lines rather than of points. It says thatfor every set of lines in R3, there exist 3 mutually perpendi
ular planes su
h thatthe interior of ea
h of the resulting o
tants is interse
ted by no more than half ofthe lines.14.3 THE PROBLEMS OF BORSUK AND KNASTERThe topologi
al methods used in proofs of measure partition results are a
tuallyappli
able to a mu
h wider 
lass of 
ombinatorial and geometri
 problems. Thisphenomenon 
an be partially explained by the fa
t that quite di�erent problems,whi
h on the surfa
e have very little in 
ommon (say one of them may be dis
reteand the other not), may a
tually lead to the same or 
losely related 
on�gurationspa
es and test maps. This in turn implies that su
h problems both follow fromthe same general topologi
al prin
iple and that they 
ould, despite appearan
es, be
lassi�ed as \relatives".14.3.1 BORSUK'S PROBLEMBorsuk's well-known problem about 
overing sets in Rn with sets of smaller diameterwas solved in the negative by J. Kahn and G. Kalai [KK93℄ who proved that thesize of a minimal 
over is exponential in n; see Chapters 1 and 2 of this Handbook.This, however, gave a new impetus to the study of \Borsuk numbers" after the oldexponential upper bounds suddenly be
ame more plausible. This may be one of thereasons why results about \universal 
overs", originally used for these estimates,have re
eived new attention in the last few years.The following result was proved originally by V. Makeev; see also [HMS, Kup99℄.Re
all the rhombi
 dode
ahedron U3, the polytope bounded by twelve rhombi
fa
ets, whi
h appeared in Se
tion 14.2.5.THEOREM 14.3.1 [Mak98℄A rhombi
 dode
ahedron of width 1 is a universal 
over for all sets S � R3 ofdiameter 1. In other words, ea
h set of diameter 1 in 3-spa
e 
an be 
overed by arhombi
 dode
ahedron whose opposite fa
es are 1 unit apart.Let � � Rn be a regular simplex of edge-length 1, with verti
es v1; : : : ; vn+1.Then the interse
tion of n(n + 1)=2 parallel strips Sij of width 1, where Sij isbounded by the (n�1)-planes orthogonal to the segment [vi; vj ℄ passing throughthe verti
es vi and vj (i < j), is a higher dimensional analog of the rhombi
 dode
-ahedron. It is easy to see that this is just another des
ription of the polytope Unthat we en
ountered in Problem 14.2.9.CONJECTURE 14.3.2 Makeev 
onje
ture [HMS℄The polytope Un is a universal 
over in Rn. In other words, for ea
h set S � Rn ofdiameter 1, there exists an isometry I : Rn ! Rn su
h that S � I(Un).The relevan
e of the Makeev 
onje
ture for the general Borsuk problem isobvious. The following stronger 
onje
ture is yet another example of a topologi
al
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statement with potentially interesting 
onsequen
es in dis
rete and 
omputationalgeometry.CONJECTURE 14.3.3 [HMS℄Let f : Sn�1 ! R be an odd fun
tion, and let �n � Rn be a regular simplex ofedge-length 1, with verti
es v1; : : : ; vn+1. Then there exists an orthogonal linearmap A 2 SO(n) su
h that the n(n+ 1)=2 hyperplanes Hij ; 1 � i < j � n+ 1, are
on
urrent, whereHij := fx 2 Rn j hx;A(vj � vi)i = f(A(vj � vi))g:G. Kuperberg showed in [Kup99℄ that, unlike the 
ases n = 2 and n = 3, forn � 4 there is homologi
ally an even number of isometries I : Rn ! Rn su
h thatS � I(Un) for a given set S of 
onstant width. Kuperberg showed that the Makeev
onje
ture 
an be redu
ed (essentially in the spirit of the CS/TM-s
heme) to thequestion of the existen
e of a �-equivariant map f : SO(n) ! V n f0g, where � isa group of symmetries of the root system of type An and the test spa
e V is ann(n� 1)=2-dimensional representation of �. The fa
t that su
h a map exists if andonly if n � 4 may be an indi
ation that the Makeev 
onje
ture is false in higherdimensions.14.3.2 KNASTER'S PROBLEMKnaster's problem is one of the old 
onje
tures of dis
rete geometry with a distin
ttopologi
al 
avor. The 
onje
ture is now known to be false in general, but theproblem remains open in many interesting spe
ial 
ases.PROBLEM 14.3.4 Knaster's problem [Kna47℄Given a �nite subset S = fs1; : : : ; skg � Sn of the n-sphere, determine the 
ondi-tions on k and n so that for ea
h 
ontinuous map f : Sn ! Rm there will exist anisometry O 2 SO(n+ 1) withf(O(s1)) = f(O(s2)) = : : : = f(O(sk)):Knaster originally 
onje
tured that su
h an isometry O always exists if k �n �m + 2. Just as in the 
ase of the Borsuk problem, the �rst 
ounterexamplestook a long time to appear. V. Makeev, and somewhat later K. Babenko andS. Bogatyi (see [Che98℄), showed that the 
ondition k � n�m+ 2 is not suÆ
ientif the original set S is suÆ
iently \
at." In [Che98℄, W. Chen 
onstru
ted new
ounterexamples 
on�rming that the (original) Knaster 
onje
ture is false for alln > m > 2.The fa
t that Knaster's 
onje
ture is false in general does not rule out thepossibility that for some spe
ial 
on�gurations S � Sn the answer is still positive.The 
ase where S is the set of verti
es of a \big" regular simplex in Sn is of spe
ialinterest sin
e it dire
tly generalizes the Borsuk-Ulam theorem.Questions 
losely related to Knaster's 
onje
ture are the problems of ins
ribingor 
ir
ums
ribing polyhedra to 
onvex bodies in Rn; see [HMS, Kup99℄. G. Ku-perberg observed that both the 
ir
ums
ription problem for 
onstant-width bodiesand Knaster's problem are spe
ial 
ases of the following problem.
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al methods 223PROBLEM 14.3.5 [Kup99℄Given a �nite set T of points on Sd�1 and a linear subspa
e L of the spa
e of allfun
tions from T to Rn, de
ide if, for ea
h 
ontinuous fun
tion f : Sd�1 ! Rn,there is an isometry O su
h that the restri
tion of f ÆO to T is an element of L.14.4 TVERBERG-TYPE THEOREMS AND THEIRAPPLICATIONSA 
olle
tion of seven points in the plane 
an be partitioned into three nonempty,disjoint subsets so that the 
orresponding 
onvex hulls have a nonempty interse
-tion. If we add two more points and 
olor all the points with three 
olors so thatea
h 
olor is equally represented, then there exists a partition of this set of nine
olored points into three multi
olored three-point sets su
h that the 
orrespondingmulti
olored triangles have a nonempty interse
tion. Something similar is possiblein 3-spa
e, but this time we need �ve points of ea
h 
olor in order to guaranteea partition of this kind. In short, given a 
onstellation of �ve blue, �ve red, and�ve yellow stars in spa
e, it is always possible to form three vertex-disjoint mul-ti
olored triangles with nonempty interse
tion. These are the simplest nontrivial
ases of Tverberg-type theorems, whi
h, together with their 
onsequen
es and mostimportant appli
ations, are shown in Figure 14.4.1.Continuous TverbergtheoremAÆne TverbergtheoremSplitting ne
kla
esCommon transversals and theTverberg-Vre�
i
a problem
Topologi
al index theoryColored Tverbergtheorems, type A Colored Tverbergtheorems, type BHalving hyperplanes and the k-set problemPoint sele
tions and weak �-netsHadwiger-Debrunner (p; q)-problemCombinatori
s of 
hessboard 
omplexes

? ���� HHHj
FIGURE 14.4.1Tverberg-type theorems.GLOSSARYTverberg-type problem: A problem in whi
h a �nite set A � Rd is to be parti-tioned into nonempty, disjoint pie
es A1; : : : ; Ap, possibly subje
t to some 
on-straints, so that the 
orresponding 
onvex hulls f
onv(Ai)gpi=1 interse
t.Colors: A set of k+1 
olors is a 
olle
tion C = fC0; : : : ; Ckg of disjoint subsets ofRd, d � k. A set B � Rd is multi
olored if it 
ontains a point from ea
h of the
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sets Ci; in this 
ase 
onv B is 
alled a rainbow simplex (possibly degenerate).Type A and Type B: Colored Tverberg problems are of type A or type B de-pending on whether k = d or k < d (resp.), where k +1 is the number of 
olors.Tverberg numbers T (r;d), T (r;k;d): T (r; k; d) is the minimal size of ea
h ofthe 
olors Ci; i = 0; : : : ; k, that guarantees that there always exist r interse
tingrainbow simpli
es. T (r; d) := T (r; d; d).14.4.1 MONOCHROMATIC TVERBERG THEOREMSTHEOREM 14.4.1 AÆne Tverberg TheoremEvery set K = fajg(q�1)(d+1)j=0 � Rd with (d+1)(q�1)+1 elements 
an be partitionedinto q nonempty, disjoint subsets K1; : : : ;Kq so that the 
orresponding 
onvex hullshave nonempty interse
tion: q\i=1 
onv (Ki) 6= ; :(The spe
ial 
ase q = 2 is Radon's theorem; see Chapter 4.)THEOREM 14.4.2 Continuous Tverberg TheoremLet �m be an m-dimensional simplex and assume that q is a prime integer. Thenfor every 
ontinuous map f : �(q�1)(d+1) ! Rd there exist vertex-disjoint fa
es�t1 ; : : : ;�tq � �(q�1)(d+1) su
h that Tqi=1 f(�ti) 6= ;.APPLICATIONS AND RELATED RESULTSThe aÆne Tverberg theorem was proved by Helge Tverberg in 1966. The 
ontinuousTverberg theorem, proved by B�ar�any, Shlosman, and Sz�u
s, redu
es to the aÆneversion if f is an aÆne (simpli
ial) map. It is not known if this result remainstrue for arbitrary q, although several authors have independently 
on�rmed thisif q is a prime power: see [�Ziv98℄ for a histori
al a

ount. Some of the relevantreferen
es for these two theorems and their appli
ations are [B�ar93, Bj�o95, Sar92,E
k93, Vol96, �Ziv98, Mat02, Mata℄.The following \ne
kla
e-splitting theorem" of Noga Alon (see [Mata℄) is a veryni
e appli
ation of the 
ontinuous Tverberg theorem.THEOREM 14.4.3Assume that an open ne
kla
e has kai beads of 
olor i, 1 � i � t, k � 2. Then it ispossible to 
ut this ne
kla
e at t(k � 1) pla
es and assemble the resulting intervalsinto k 
olle
tions, ea
h 
ontaining exa
tly ai beads of 
olor i.REMARK 14.4.4The proof of the ne
kla
e-splitting theorem provides a very ni
e example of anappli
ation of the CS/TM s
heme (Se
tion 14.1). A 
ontinuous model of a ne
kla
eis an interval [0; 1℄ together with k measurable subsets A1; : : : ; Ak representing\beads" of di�erent 
olors. It is well known that the 
on�guration spa
e of allsequen
es 0 � x1 � : : : � xm � 1 is the m-dimensional simplex, hen
e the totality
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al methods 225of all m-
uts of a ne
kla
e is identi�ed with an m-dimensional simplex �. Given a
ut 
 2 �, the assembling of the resulting subintervals I0(
); : : : ; Im(
) of [0; 1℄ intok 
olle
tions is determined by a fun
tion f : [m+ 1℄! [k℄. Hen
e, a 
on�gurationspa
e asso
iated to the ne
kla
e-splitting problem is obtained by gluing togetherm-simpli
es �f , one for ea
h fun
tion f 2 Fun([m + 1℄; [k℄). The 
omplex Cm;kobtained by this 
onstru
tion turns out, in fa
t, to be a very important exampleof a 
omplex obtained from a simplex by a deleted join operation. The readeris refereed to [Mata℄ and [�Ziv98℄ for details about the role of (deleted) joins in
ombinatori
s.An interesting 
onne
tion has emerged re
ently between ham-sandwi
h- andTverberg-type problems. An example of this is the so-
alled Tverberg-Vre�
i
a 
on-je
ture, whi
h in
orporates both the 
enter transversal theorem (Theorem 14.2.5)and the (aÆne) Tverberg theorem in a single general statement.CONJECTURE 14.4.5Assume that 0 � k � d� 1 and let S0; S1; : : : ; Sk be a 
olle
tion of �nite sets in Rdof given 
ardinalities jSij = (ri � 1)(d � k + 1) + 1; i = 0; 1; : : : ; k. Then Si 
anbe split into ri nonempty sets, S1i ; : : : ; Srii , so that for some k-dimensional aÆnesubspa
e D � Rd; D \ 
onv(Sji ) 6= ; for all i and j; 0 � i � k; 1 � j � ri.This 
onje
ture was 
on�rmed in [�Ziv99℄ for the 
ase where both d and k areodd integers and ri = q for ea
h i, where q is an odd prime number. Re
entlyS. Vre�
i
a 
on�rmed this 
onje
ture also in the 
ase r1 = : : : = rk = 2 [Vre02℄.The expository arti
le [Kal01℄ is re
ommended as a sour
e of additional infor-mation about Tverberg-type theorems not 
overed here. From among Kalai's deep
onje
tures, beautiful visions, and unexpe
ted possible 
onne
tions (e.g. with the4-
olor theorem), we sele
t the following 
onje
ture.CONJECTURE 14.4.6 Gil Kalai (1974)Given a set A � Rd, let Tr(A) be the set of all points in Rd that belong to the 
onvexhull of r pairwise disjoint subsets of A. By 
onvention let dim(;) = �1. ThenjAjXr=1 dim(Tr(A)) � 0:14.4.2 COLORED TVERBERG THEOREMSLet T (r; k; d) be the minimal number t so that for every 
olle
tion of 
olors C =fC0; : : : ; Ckg with the property jCij � t for all i = 0; : : : ; k, there exist r mul-ti
olored sets Ai = faijgkj=0, i = 1; : : : ; r, that are pairwise disjoint but wherethe 
orresponding rainbow simpli
es �i := 
onv Ai have a nonempty interse
tion,Tri=1 �i 6= ;.The 
olored Tverberg problem is to establish the existen
e of, and then toevaluate or estimate, the integer T = T (r; k; d). The 
ases k = d and k < d arerelated, but there is also an essential di�eren
e. In the 
ase k = d, provided tis large enough, the number of interse
ting rainbow simpli
es 
an be arbitrarilylarge. In the 
ase k < d, for dimension reasons, one 
annot expe
t more thanr � d=(d� k) interse
ting k-dimensional rainbow simpli
es. This is the reason why
olored Tverberg theorems are 
lassi�ed as type A or type B, depending on whether
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k = d or k < d.In the type A 
ase, where T (r; d; d) is abbreviated simply as T (r; d), it is easyto see that a lower bound for this fun
tion is r. It is 
onje
tured that this lowerbound is attained:CONJECTURE 14.4.7 (Type A)T (r; d) = r for all r and d.This 
onje
ture has been 
on�rmed for r = 2 and for d � 2 [B�ar93℄.It is interesting to note (see Se
tion 14.4.3) that the 
olored Tverberg problem(type A) was originally 
onje
tured and designed as a tool for solving importantproblems of 
omputational geometry. Note also that the weak form of the 
onje
-ture, T (r; d) < +1, is already far from obvious.The following theorem of �Zivaljevi�
 and Vre�
i
a (see [B�ar93, Mata, �Ziv98℄)provides the best bounds known in the general 
ase. It implies that T (r; d) � 4r�3for all r and d.THEOREM 14.4.8 (Type A)For every integer r and every 
olle
tion of d+1 disjoint sets (\
olors") C0; C1; : : : ; Cdin Rd, ea
h of 
ardinality at least 4r� 3, there exist r disjoint, multi
olored subsetsSi � Sdi=0 Ci su
h that r\i=1 
onv Si 6= ;:If r is a power of a prime number then it suÆ
es to assume that the size of ea
h ofthe 
olors is at least 2r � 1. In other words, T (r; d) � 2r � 1 if r is a prime powerand T (r; d) � 4r � 3 in the general 
ase.In the type B 
ase, let us assume that r � d=(d � k), whi
h is a ne
essary
ondition for a 
olored Tverberg theorem of type B.CONJECTURE 14.4.9 (Type B)T (r; k; d) = 2r � 1.There exist examples showing that T (r; k; d) � 2r � 1.The following theorem [VZ94, �Ziv98℄ 
on�rms Conje
ture 14.4.9 above for the
ase of a prime power r.THEOREM 14.4.10 (Type B)Let C0; : : : ; Ck be a 
olle
tion of k + 1 disjoint �nite sets (\
olors") in Rd. Letr be a prime integer su
h that r � d=(d � k) and let jCij = t � 2r � 1. Thenthere exist r multi
olored k-dimensional simpli
es Si, i = 1; : : : ; r, that are pairwisevertex-disjoint su
h that r\i=1 
onv Si 6= ;:The usual pri
e for using topologi
al (equivariant) methods is the extra as-sumption that r is a prime or a power of a prime number. On the other hand, theresults obtained by these methods hold in greater generality and in
lude nonlinearversions of Theorems 14.4.8 and 14.4.10; see [�Ziv98℄ for details and examples.EXAMPLE 14.4.11
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al methods 227The simplest instan
e of Theorem 14.4.10 is the 
ase d = 2, k = 1, and r = 2.Then, in the nonlinear version of this theorem, we re
ognize the well-known fa
tthat the 
omplete bipartite graph K3;3 is not planar. This is one of the earliestresults in topology, already known to Euler, who formulated it as a problem aboutthree houses and three wells.14.4.3 APPLICATIONS OF COLORED TVERBERG THEOREMSTheorem 14.4.8 provided a general bound of the form T (d+ 1; d) � 4d+ 1, whi
hopened the possibility of proving many interesting results in dis
rete and 
ompu-tational geometry.HALVING HYPERPLANES AND THE k -SET PROBLEMThe number hd(n) of halving hyperplanes of a set of size n in Rd, i.e., the number ofessentially distin
t pla
ements of a hyperplane that split the set in half, a

ordingto B�ar�any, F�uredi, and Lov�asz (see [B�ar93℄), satis�eshd(n) = O(nd��d); where �d = T (d+ 1; d)�(d+1):POINT SELECTIONS AND WEAK �-NETSThe equivalen
e of the following statements was established in [ABFK92℄ beforeTheorem 14.4.8 was proved. Considerable progress has sin
e been made in thisarea [Mat02℄, and di�erent 
ombinatorial te
hniques for proving these statementshave emerged in the meantime.� Weak 
olored Tverberg theorem: T (d+ 1; d) is �nite.� Point sele
tion theorem: There exists a 
onstant s = sd, whose value de-pends on the bound for T (d+1; d), su
h that any family H of (d+1)-elementsubsets of a set X � Rd of size jHj = p� jXjd+1� 
ontains a pier
eable subfam-ily H0 su
h that jH0j � ps� jXjd+1�. (H0 is pier
eable if TS2H0 
onv S 6= ;.A �d B if A � 
1(d)B + 
2(d), where 
1(d) > 0 and 
2(d) are 
onstantsdepending only on the dimension d.)� Weak �-net theorem: For any X � Rd there exists a weak �-net F for 
onvexsets with jF j �d �(d+1)(1�1=s), where s = sd is as above. (See Chapter 36 forthe notion of �-net; a weak �-net is similar, ex
ept that it need not be partof X .)� Hitting set theorem: For every � > 0 and every X � Rd there exists a setE � Rd that misses at most �� jXjd+1� simpli
es of X and has size jEj �d �1�sd ,where sd is as above.OTHER RELATED RESULTSA topologi
al 
on�guration spa
e that arises via the CS/TM-s
heme in proofs ofTheorems 14.4.8 and 14.4.10 is the so-
alled 
hessboard 
omplex �r;t, whi
h owesits name to the fa
t that it 
an be des
ribed as the 
omplex of all nontaking rookpla
ements on an r � t 
hessboard. This is an interesting 
ombinatorial obje
t
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that arises independently as the 
oset 
omplex of the symmetri
 group, as the
omplex of partial mat
hings in a 
omplete bipartite graph, and as the 
omplexof all partial inje
tive fun
tions. In light of the fa
t that the high 
onne
tivityof a 
on�guration spa
e is a property of 
entral importan
e for appli
ations (
f.Theorem 14.5.1), 
hessboard 
omplexes have been studied from this point of viewin numerous papers; see [Ath℄ and [Wa
01℄ for re
ent advan
es and referen
es.14.5 TOOLS FROM EQUIVARIANT TOPOLOGYThe method of equivariant maps is a versatile tool for proving results in dis
retegeometry and 
ombinatori
s. For many results these are the only proofs available.Equivariant maps are typi
ally en
ountered at the �nal stage of appli
ation of theCS/TM-s
heme (Se
tion 14.1).GLOSSARYG-spa
e X, G-a
tion: A group G a
ts on a spa
e X if ea
h element of Gis a 
ontinuous transformation of X and multipli
ation in G 
orresponds to
omposition of transformations. Formally, a G-a
tion � is a 
ontinuous map� : G�X ! X su
h that �(g; �(h; x)) = �(gh; x). Then X is 
alled a G-spa
eand �(g; x) is often abbreviated as g � x or gx.Free G-a
tion: An a
tion is free if g �x = x for some x 2 X implies g = e, wheree is the unit element in G.G-equivariant map: A map f : X ! Y of two G-spa
es X and Y is equivariantif for all g 2 G and x 2 X; f(g � x) = g � f(x).Borsuk-Ulam-type theorem: Any theorem establishing the nonexisten
e of aG-equivariant map between two G-spa
es X and Y .n-
onne
ted spa
e: A path-
onne
ted and simply 
onne
ted spa
e with trivialhomology in dimensions 1; 2; : : : ; n. A path-
onne
ted spa
e X is simply 
on-ne
ted or 1-
onne
ted if every 
losed loop ! : S1 ! X 
an be deformed to apoint.The following generalization of the Borsuk-Ulam theorem is the key result usedin proofs of many Tverberg-type statements. Note that if X = Sn; Y = Sn�1,and G = Z2, it spe
ializes to the \odd" form of the Borsuk-Ulam theorem given inSe
tion 14.2 (following Theorem 14.2.2).THEOREM 14.5.1Suppose X and Y are simpli
ial (more generally CW) 
omplexes equipped with thefree a
tion of a �nite group G, and that X is m-
onne
ted, where m = dim Y .Then there does not exist a G-equivariant map f : X ! Y .Theorem 14.5.1 is strong enough for the majority of appli
ations. Nevertheless,in some 
ases more sophisti
ated tools are needed. A topologi
al index theory is a
omplexity theory for G-spa
es that allows us to 
on
lude that there does not exista G-equivariant map f : X ! Y if the G-spa
e Y is of larger 
omplexity than theG-spa
e X . A measure of 
omplexity of a given G-spa
e is the so-
alled equivariant
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al methods 229index IndG(X). In general, an index fun
tion is de�ned on a 
lass of G-spa
es,say all �nite G-CW 
omplexes, and takes values in a suitable partially ordered set
. For example if G = Z2, an index fun
tion IndZ2(X) is de�ned as the minimuminteger n su
h that there exists a Z2-equivariant map f : X ! Sn. In this 
ase
 := N is the poset of nonnegative integers. Note that the Borsuk-Ulam theoremsimply states that IndZ2(Sn) = n.PROPOSITION 14.5.2 [Mata, �Ziv98℄For ea
h nontrivial �nite group G, there exists an integer-valued index fun
tionIndG(�) de�ned on the 
lass of �nite, G-simpli
ial 
omplexes su
h that(i) If IndG(X) > IndG(X), then a G-equivariant map f : X ! Y does not exist.(ii) If X is (n�1)-
onne
ted then IndG(X) � n.(iii) If X is an n-dimensional, free G-
omplex then IndG(X) � n.(iv) IndG(X � Y ) � IndG(X) + IndG(Y ) + 1, where X � Y is the join of spa
es.It is 
lear that the 
omputation or good estimates of the 
omplexity indi
esIndG(X) are essential for appli
ations. O

asionally this 
an be done even if thedetails of 
onstru
tion of the index fun
tion are not known. Su
h a tool for �ndingthe lower bounds for an index fun
tion des
ribed in Proposition 14.5.2 is providedby the following inequality.PROPOSITION 14.5.3 Sarkaria inequality [Mata, �Ziv98℄Let L be a free G-
omplex and L0 � L a G-invariant, simpli
ial sub
omplex. Let�(LnL0) be the order 
omplex (
f. Chapter 21) of the 
omplementary poset LnL0.Then IndG(L0) � IndG(L)� IndG(�(L n L0))� 1:In some appli
ations it is more natural, and sometimes essential, to use moresophisti
ated partially ordered sets of G-degrees of 
omplexity. A notable exampleis the ideal valued index theory of S. Husseini and E. Fadell [FH88℄, whi
h proveduseful in establishing the existen
e of equilibrium points in in
omplete markets(mathemati
al e
onomi
s).14.6 SOURCES AND RELATED MATERIALFURTHER READINGThe reader will �nd additional information about appli
ations of topologi
al meth-ods in dis
rete geometry and 
ombinatori
s, as well as a more 
omprehensive bib-liography, in the survey papers [Alo88, B�ar93, Bj�o95, E
k93, Ste85, �Ziv98℄ as wellas in the books [Mat02, Mata℄.The reader interested in broader aspe
ts of the topology/
omputer s
ien
e in-tera
tion is dire
ted to the following sour
es:
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(1) Both [BEA+99℄ and [DEG99℄, surveys of existing appli
ations, may also beseen as programs o�ering an insight into future resear
h in 
omputationaltopology, identifying some of the most important general resear
h themes inthis �eld.(2) The home page of the BioGeometry proje
t, [BioG℄, also in
ludes informa-tion (�-shapes, topologi
al persisten
e, et
.) about the topologi
al aspe
ts ofthe problem of designing 
omputational te
hniques and paradigms for repre-senting, storing, sear
hing, simulating, analyzing, and visualizing biologi
alstru
tures.(3) The CompuTop.org Software Ar
hive (maintained by Nathan Dun�eld) is fo-
used on software for low-dimensional topologi
al 
omputations [Dun℄.(4) The Lisp 
omputer program Kenzo [Ser℄ exempli�es the powerful 
omputa-tional te
hniques now available in e�e
tive algebrai
 topology.(5) For general information about algebrai
 topology the reader may �nd theWeb site [WD℄ of the Hopf Ar
hive and the asso
iated Topology dis
ussiongroup (C. Wilkerson, D. Davis) extremely useful.RELATED CHAPTERSChapter 1: Finite point 
on�gurationsChapter 4: Helly-type theorems and geometri
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