14 TOPOLOGICAL METHODS
Rade T. Zivaljevi¢

INTRODUCTION

A problem is solved or some other goal achieved by “topological methods” if in our
arguments we appeal to the “form,” the “shape,” the “global” rather than “local”
structure of the object or configuration space associated with the phenomenon we
are interested in. This configuration space is typically a manifold or a simplicial
complex. The global properties of the configuration space are usually expressed in
terms of its homology and homotopy groups, which capture the idea of the higher
(dis)connectivity of a geometric object and to some extent provide an analysis
properly geometric or linear that expresses location directly as algebra expresses
magnitude.*

Thesis: Any global effect that depends on the object as a whole and that cannot be
localized is of homological nature, and should be amenable to topological methods.

WHERE HAS TOPOLOGY BEEN APPLIED IN COMPUTER SCIENCE?

The references [ATCS] and [BEA+99] provide a broad overview of many current
applications of algebraic topology in computer science and vice versa as well as an
insight into promising new developments. The field is undergoing a rapid expansion
and the following list should be understood as a sample of some of the main themes
or aspects of potential future research.

(a) Algebraic topology (AT) is viewed as a useful tool in solving combinatorial
or discrete geometric problems of relevance to computing and the analysis of
algorithms, [Mat02, Mata, Ziv98].

(b) Computational topology emerges [BEA+99] as a separate branch of computa-
tional geometry unifying topological questions in computer applications such
as image processing, cartography, computer graphics, solid modeling, mesh
generation, and molecular modeling [BEA+99, DEG99].

(c) Effective algebraic topology deals with algorithmic and computational as-
pects of topology including the recognition problem (3-manifolds), effective
computations of topological invariants (homology, homotopy groups, knot in-
variants), etc. [Ser].

(d) Combinatorial proofs of statements originally obtained by nonconstructive
topological methods were discovered [Matb, Zie02].

(e) The methods of AT can provide qualitative and shape information unavailable
by the use of other methods. For example AT provides a tool for visualization

LA dream of G.W. Leibniz expressed in a letter to C. Huygens dated 1697; see [Bre95, Chap. 7].
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and feature identification in highly complex empirical data, e.g., in biogeom-
etry [BioG].

(f) AT provides a useful framework for analyzing problems in distributed and
concurrent computing [HR95, HR00].

HOW IS TOPOLOGY APPLIED IN DISCRETE GEOMETRIC PROBLEMS?

In this chapter we put some emphasis on the role of (equivariant) topological meth-
ods in solving combinatorial or discrete geometric problems that have proven to be
of relevance for computational geometry and computational mathematics in gen-
eral. The versatile configuration space/test map scheme was developed in numerous
research papers over the years and formally codified in [Ziv98]. Its essential features
are the following two steps:

Step 1: The problem is rephrased in topological terms.

The problem should give us a clue how to define a “natural” configuration
space X and how to rephrase the question in terms of zeros or coincidences of
the associated test maps. Alternatively the problem may be divided into several
subproblems, in which case one is often led to the question of when the subsets of
X corresponding to the various subproblems have nonempty intersection.

Step 2: A standard topological technique is used to solve the rephrased
problem.

The topological technique that is most frequently used in discrete geometric
problems is based on the technique of intersecting homology classes and on gener-
alized Borsuk-Ulam theorems.

14.1 THE CONFIGURATION SPACE/TEST MAP PARADIGM

GLOSSARY

Configuration space/test map scheme (CS/TM): A very useful and gen-
eral scheme for proving combinatorial or geometric facts. The problem is re-
duced to the question of showing that there does not exist a G-equivariant map
f X = V\ Z (Section 14.5) where X is the configuration space, V' the test
space, and Z the test subspace associated with the problem, while G is a natu-
rally arising group of symmetries.

Configuration space: In general, any topological space X that parameterizes a
class of configurations of geometric objects (e.g., arrangements of points, lines,
fans, flags, etc.) or combinatorial structures (trees, graphs, partitions, etc.).
Given a problem P, an associated configuration or candidate space Xp collects
all geometric configurations that are (reasonable) candidates for a solution of P.

Test map and test space : A mapt: Xp — V from the configuration space Xp
into the so-called test space V that tests the validity of a candidate p € Xp as



Chapter 14: Topological methods 211

a solution of P. The final ingredient is the test subspace Z C V, where p € X
is a solution to the problem if and only if #(p) € Z. Usually V = R? while Z is
just the origin {0} C V or more generally a linear subspace arrangement in V.

Equivariant maps: The final ingredient in the CS/TM-scheme is a group G of
symmetries that acts on both the configuration space Xp and the test space
V' (keeping the test subspace Z invariant). The test map ¢ is always assumed
G-equivariant, i.e., t(g-x) = g - t(z) for each ¢ € G and = € Xp. Some of the
methods and tools of equivariant topology are outlined in Section 14.5.

EXAMPLE 14.1.1 (Y. Soibelman [S0i02])

Suppose that p is a metric on R? that induces the same topology as the usual Eu-
clidean metric. In other words we assume that for each sequence of points (z,)n>o0,
p(zn, o) = 0 if and only if |z, —xo| — 0. Then there exists a p-equilateral triangle,
i.e., a triple (a,b,c) of distinct points in R? such that p(a,b) = p(b,c) = p(c, a).

This is our first example that illustrates the CS/TM-scheme. The configuration
space X should collect all candidates for the solution, so a first, “naive” choice is the
space of all (ordered) triples (z,y,z) € R%. Of course we can immediately rule out
some obvious nonsolutions, e.g., degenerate triangles (z,y, z) such that at least one
of numbers p(z,y), p(y, z), p(z,x) is zero. (This illustrates the fact that in general
there may be several possible choices for a configuration space associated to the
initial problem.) Our choice is X := R* \ A where A := {(z,7,7) | = € R*}. A
“triangle” (z,y,z) € X is p-equilateral if and only if (p(z,y), p(y, 2), p(z,2)) € Z,
where Z := {(u,u,u) € R* | u € R}. Hence a test map ¢ : X — R® is defined by
t(z,y,2) = (p(z,y), ply, 2), p(z,x)), the test space is V = R®, and Z C R? is the
associated test subspace. A triangle {x,y, z}, viewed as a set of vertices, is in general
labeled by six different triples in the configuration space X. This redundancy is a
motivation for introducing the group of symmetries G = S3, which acts on both the
configuration space X and the test space V. The test map ¢ is clearly S3-equivariant.
If the image of t is disjoint from Z, there arises an Ss-equivariant map from X to
V' \ Z. If St is the unit circle in a 2-plane in V = R?® orthogonal to Z = R', then
projection and normalization give an Sz-equivariant map «: V' \ Z — S'. The unit
3-sphere S® in a 4-plane orthogonal to A is S3-invariant, hence the inclusion map
B: 8% — X is Ssz-equivariant. Finally, the composition f = fotoa: 5% — St is
also Ss-equivariant, which leads to a contradiction. One way to prove this is to use
Theorem 14.5.1, since the sphere S? is clearly 1-connected.

Here is another example of how topology comes into play and proves useful in
geometric and combinatorial problems. The configuration space associated to the
next problem is a 2-dimensional torus T2 = S' x S'. This time, however, the test
map is not explicitly given. Instead, the problem is reduced to counting intersection
points of two “test subspaces” in 7.

EXAMPLE 14.1.2 A watch with two equal hands

A watch was manufactured with a defect so that both hands (minute and hour)
are identical. Otherwise the watch works well and the question is to determine the
number of ambiguous positions, i.e., the positions for which it is not possible to
determine the exact time.

First of all we observe that every position of a hand is determined by an angle
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FIGURE 14.1.1 w
The configuration space of the two hands is a torus

w € [0,27], so that the configuration space of all possible positions of a hand is
homeomorphic to the unit circle S'. Two independent hands have the 2-dimensional
torus T? = S! x S! as their configuration space, i.e., the space representing all
allowed states or positions of the system. A usual model of a torus is a square
or a rectangle (see Figure 14.1.1) with the opposite sides glued together. If 6
corresponds to the minute hand and w is the coordinate of the hour hand, then the
fact that the first hand is twelve times faster is recorded by the equation 8 = 12w.
This equation describes a curve I'; on the torus 72, which is just a circle winding
12 times in the direction of the 6 axis while it winds only once in the direction
of w axis. The curve I'y is represented in our picture as the union of 12 line
segments, seven of them indicated in Figure 14.1.1. If the hands change places
then the corresponding curve I's has equation w = 126. The ambiguous positions
are exactly the intersection points of these two curves (except those that belong to
the diagonal A := {(f,w) |6 = w}, when it is still possible to tell the exact time
without knowing which hand is for hours and which for minutes). The reader can
now eagsily find the number of these intersection points and compute that there are
143 of them in the intersection I'y N I's, and 11 in the intersection I't N Ty N A,
which shows that there are all together 132 ambiguous positions.

REMARK 14.1.3

Let us note that the “watch with equal hands” problem reduces to counting points
or 0-dimensional manifolds in the intersection of two circles, viewed as 1-dimensional
submanifolds of the 2-dimensional manifold T2. More generally, one may be inter-
ested in how many points there are in the intersection of two or more submani-
folds of a higher-dimensional ambient manifold. Topology gives us a versatile tool
for computing this and much more, in terms of the so-called intersection product
a —~ B of homology classes a and § in a manifold M. This intersection product is,
via Poincaré duality, equivalent to the “cup” product, and has the usual properties
[Mun84]. In our Example 14.1.2, keeping in mind that a ~ b = — b —~ a for all
1-dimensional classes, and in particular that @ ~ a = 0 if dim (a) = 1, we have
(2] ~ [a] = (8] + 12[w]) ~ (] + 12(6]) = [6] ~ [w] + 12[] ~ [w] + 12(6] ~
[0] + 144[w] —~ [6] = 143[w] —~ [f] and, taking the orientation into account, we
conclude that the number of intersection points is 143.
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14.2

PARTITIONS OF MASS DISTRIBUTIONS

Problems of partitioning mass distributions in the plane, 3-space, or spaces of higher
dimension form the first circle of discrete geometric problems where topological
methods have traditionally been applied with great success.

An (open) ham sandwich is a collection of three measurable sets in R®, repre-
senting a slice of bread, a slice of ham, and a slice of cheese. It turns out that there
always exists a plane simultaneously halving all three measurable sets or, in other
words, that a ham sandwich can be cut fairly into two pieces by a single straight
cut. Suppose, on the other hand, that you want to split an irregularly shaped slice
of pizza with a hungry friend who is supposed to divide the pizza into two pieces by
a straight knife-cut, but who can cut anywhere he likes. You are allowed to mark
your piece in advance by specifying a single point that will lie in your piece. Then,
if you are very careful about marking your piece, you can count on at least one third
of the pizza. These two results are instances of the ham sandwich theorem and the
center point theorem which, together with their relatives, often require topological
methods in their proofs.

GLOSSARY

Measure: An abstract function p defined on a class of sets that has all the formal
properties (additivity, positivity) of the usual volume or area functions.

Measurable set: Any set in the domain of the function pu.

Mass distribution and density function: A density function is an integrable
function f : R? — [0,400) representing the density of a “mass distribution”
(measure) on R?. The measure y arising this way is defined by pu(A) := S fdz.

Halving hyperplane: A hyperplane that simultaneously bisects a family of mea-
surable sets.

Grassmann and Stiefel manifolds: The Grassmann manifold G (R"™) of all
k-dimensional linear subspaces of R™ and the Stiefel manifold V;(R™) of all or-
thonormal k-frames in R™ are frequently used in the construction of configuration
spaces associated to measure partitioning problems.

14.2.1

THE HAM SANDWICH THEOREM

Given a collection of d measurable sets (mass distributions, finite sets) in RY, the
problem is to simultaneously bisect all of them by a single hyperplane. Often a
measurable set is a geometric object A C ]Rd, say a polytope, whose measure is
simply its volume vol A. More generally, a measurable set A is an arbitrary subset
of R if it is clear from the context what we mean by its “measure” pu(A). Typically,
A is a Lebesgue-measurable set and u(4) = m(A) its Lebesgue measure which,
in the usual cases, reduces to the measure vol described above. More generally, if
f:RY - RT is an integrable density function, then p(A) := Jifdm = [pa foadm
is the measure or the mass distribution associated with the function f, where ¢4
is the characteristic function of A (1 on A, 0 otherwise). An important special
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case arises if f = ¢p for a Lebesgue-measurable set B, where u(A) = m(A N B).
Finally, if S C R? is a finite set, then u(A) := |A N S| is the so-called counting
measure induced by the set S. All of these examples are subsumed by the case
of a positive, og-additive Borel measure g. This means that p is defined on a o-
algebra F of subsets of R? that includes all closed halfspaces and other sets that
arise naturally in geometric problems. The reader should, in principle, not have
any difficulty reformulating any of the following results for whatever special class
of measures she may be interested in.

THEOREM 14.2.1 Ham Sandwich Theorem

Let py, po, ..., pa be a collection of measures (mass distributions, measurable sets,
finite sets) in the sense above. Then there exists a hyperplane H such that for all
i=1,....d, p(HT) > 1/2p;(RY) and p;(H™) > 1/2 pi(RY), where HT and H™-
are the closed halfspaces associated with the hyperplane H.

In the special case where u(H) = 0, i.e., where the hyperplane itself has measure
zero, H is called a halving hyperplane since p;(HT) = pi(H™) = 1/2 p;(R?) for
all i. A halving hyperplane H is also called a “ham sandwich cut,” for the reasons
noted above.

TOPOLOGICAL BACKGROUND

The topological result lying behind the ham sandwich theorem is the Borsuk-Ulam
theorem, [Ste85, Mata]. The proof of the ham sandwich theorem historically marks
one of the first applications of the CS/TM-scheme, with the (d—1)-sphere as the
configuration space, R? as the test space, and G = Z; as the group of symmetries
associated to the problem. Given a collection {4;}% | of d measurable sets, the test
map ¢ : S9! — R? is defined by t(e) = (a,...,aq), with o; determined by the
condition that H; := {x € R? | (z,e) = a;} is a halving hyperplane for the meas-
urable set A;. The test space is the diagonal Z := {(a,...,a) € R* | a € R}. The
test map t is obviously “odd”, or Zs-equivariant, in the sense that t(—e) = —t(e).

THEOREM 14.2.2 Borsuk-Ulam Theorem

For every continuous map f : S — R" from an n-dimensional sphere into n-
dimensional Euclidean space, there exists a point x € S™ such that f(z) = f(—x).

An important special case of the Borsuk-Ulam theorem arises if f is an odd
map. The conclusion is that a continuous odd map must have a zero on the sphere,
ie., f(z) = 0 for some € S? This is precisely the reason why the test map ¢
for the ham sandwich theorem has the property t(e) € Z for some e € S?~!. Note
that the general Borsuk-Ulam theorem follows from the special case if the latter is
applied to the map ¢ : S¢ — R? given by ¢(z) = f(z) — f(—z).

There is a different topological approach to the ham sandwich theorem closer
to the earlier example about a watch with two indistinguishable hands. Here we
mention only that the role of the torus T2 is played by a manifold M representing all
hyperplanes in R? (the configuration space), while the curves I'y and I'y are replaced
by suitable submanifolds NV; of M, one for each of the measures u;, i = 1,...,d.
N; is defined as the space of all halving hyperplanes for the measurable set A;.
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APPLICATIONS AND RELATED RESULTS

Let S1,...,Sq be a collection of finite sets, called “colors,” in RY. Assume that the
size of each of these sets is n and that the points are all in general position. Then,
according to Akiyama and Alon (see [Bar93]), the ham sandwich theorem implies
that there exists a partition of S := ngl S; into n nonempty, pairwise disjoint sets
D;,...,D, that are multicolored in the sense that |D; N S;| = 1 for all ¢ and j,
such that the simplices conv Dy, ...,conv D,, are pairwise disjoint.

14.2.2

THE CENTER POINT THEOREM

THEOREM 14.2.3 Center Point Theorem

Let A C R? be a Lebesque-measurable subset of R? or, more generally, one of the
measures p described prior to Theorem 14.2.1. Then there exists a point © € R
such that for every closed halfspace P C R?, if & € P then

vol(A)
d+1"°

vol(PN A) >

When formulated for a more general measure p, the result guarantees that u(P) >
w(RY)/(d+ 1) for every closed halfspace P > .

TOPOLOGICAL BACKGROUND

If the Borsuk-Ulam theorem is responsible for the ham sandwich theorem, then
R. Rado’s center point theorem can be seen as a consequence of another well-known
topological result, Brouwer’s fixed point theorem. Note that the usual formulation
about self-maps f : K — K generalizes easily to the following formulation.

THEOREM 14.2.4 Brouwer’s Fized Point Theorem

Let K be a compact, convez body in R™. Suppose f : K — R™ is a continuous map
such that for each x € K the image f(x) belongs to the supporting cone of K at
x, cone, (K) := U, so(x + A(K —x)). Then f(x) =z for some x € K.

Very often it is more convenient to use Kakutani’s theorem, which is a gener-
alization of Brouwer’s theorem to “multivalued functions” f: B — R™.

The center point theorem is deduced from Brouwer’s theorem roughly as fol-
lows. Let x € B, where B is a “large” ball containing the set A. If x is not a center
point, then there is a vector e € S¢~! pointing in a direction in which z can be
moved to make it closer to being one. In this way we define a function = — f(z),
and a fixed point, i.e., a point that doesn’t need to be moved, is a center point.

Recall that the center point theorem was originally deduced from Helly’s the-
orem about intersecting families of convex sets, which also has several topological
relatives.
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APPLICATIONS AND RELATED RESULTS

The first proof of the center point theorem (R. Rado) was based on Helly’s theo-
rem. For this reason, it is often viewed as a measure-theoretic equivalent of Helly’s
theorem.

As noted by Miller and Thurston (see [MTTV97, MTTV98]), the center point
theorem and the Koebe theorem on the disk representation of planar graphs can be
used to prove the existence of a small separator for a planar graph, a result proved
originally (by Lipton and Tarjan) by different methods.

The regression depth rdp(H) of a hyperplane H relative to a collection P
of n points in R? is the minimum number of points that H must pass through in
moving to the vertical position. Dually, given an arrangement # of n hyperplanes
in R?, the regression depth rdy (z) of a point  relative to # is the smallest & such
that  cannot escape to infinity without crossing (or moving parallel to) at least
k hyperplanes. The problem of finding a point (resp. hyperplane) with maximum
regression depth relative to H (resp. P) is shown in [AETO00] to be intimately
connected with the problem of finding center points. The main result (confirming
a conjecture of Rousseeuw and Hubert) is that there always exists a point with
regression depth [n/(d + 1)]; cf. Chapter 57 of this Handbook.

14.2.3

CENTER TRANSVERSAL THEOREM

THEOREM 14.2.5 C(Center Transversal Theorem

Let Ag,Ay,...,Ax, 0 <k < d-—1, be a collection of Lebesque-measurable sets in
R® or, more generally, let po, p1,--., 1 be a sequence of measures. Then there

exists o k-dimensional affine subspace D C R? such that for every closed halfspace
H(v,a) :={z € R? | (z,v) < a} and every i € {0,1,...,k},

m(A;)
DCH = m(4;NH > — 7
C H(v,a) m(A; N (U’a))_d—k+1
If formulated for a sequence po,. .., of more general measures, the result guar-

antees that p;(H (v, a)) > pi(RY)/(d — k + 1) for all i and all H(v,a) D D.

TOPOLOGICAL BACKGROUND

The center transversal theorem contains the ham sandwich and center point theo-
rems as two boundary cases [ZV90]. The topological principle that is at the root
of this result should be strong enough for this purpose. This result has several
incarnations. One of them, in the language of the CS/TM-scheme, is a theorem of
E. Fadell and S. Husseini [FH88] that claims the nonexistence of a Z3*-equivariant
map f : V,x — (RF)"»%#\ {0} from the Stiefel manifold of all orthonormal k-frames
in R" to the sum of n — k copies of R¥. The group ZS}’“ can be identified with
the group of all diagonal matrices in SO (k) and its action on R* is induced by the
obvious action of SO(k). A related result [FH88, ZV90] is that the vector bun-
dle f,?(n_k) does not admit a nonzero, continuous cross-section, where & is the
tautological k-plane bundle over the Grassmann manifold G (R").
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APPLICATIONS AND RELATED RESULTS

The following Helly-type transversal theorem, due to Dol’nikov (see [Eck93]), is
a consequence of the same topological principle that is at the root of the cen-
ter transversal theorem. Moreover, the center transversal theorem is related to
Dol’nikov’s result in the same way that the center point theorem is related to
Helly’s theorem.

THEOREM 14.2.6

Let Ko, . .., Ky, be families of compact convex sets. Suppose that for every ¢, and for
each k-dimensional subspace V. C R?, there exists a translate V; of V intersecting
every set in IC;. Then there exists a common k-dimensional transversal of the family
K:= Uf:o Ki, i.e., there exists an affine k-dimensional subspace of R? intersecting
all the sets in IC.

Let K = {Ky, ..., K} } be a family of convex bodies in R", 1 < k <n —1. Then
an affine [-plane A C R" is called a common maximal l-transversal of K if
m(K; NA) > m(K; N (A+ z)) for each i € {0,...,k} and each z € R", where m
is [-dimensional Lebesgue measure in A and A + z, respectively. It was shown in
[MVZ01] that, given a family K = {K;}¥ , of convex bodies in R" (k < [), the set
Ci(K) of all common maximal [-transversals of K has to be “large” from both the
measure-theoretic and the topological point of view. Here again one uses the same
topological principle responsible for all results in this section together with some
integral geometry calculations to show that a cohomologically “big” subspace of
the Grassmann manifold G (R™) has to be large also in a measure-theoretic sense.

14.2.4

EQUIPARTITION OF MASSES BY HYPERPLANES

A measurable set A C R® can be partitioned by three planes into 8 pieces of equal
measure. This is an instance of the general problem of characterizing all triples
(d, j, k) such that for any j mass distributions (measurable sets) in RY, there exist
k hyperplanes, k < d, such that each of the 2¥ “orthants” contains the fraction
1/2% of each of the masses. Such a triple (d,j, k) will be called admissible. For
example, the ham sandwich theorem implies that (d, d, 1) is admissible. It is known
(E. Ramos, [Ram96]) that d > j(2*¥ — 1)/k is a necessary condition and d > j2k~1
a sufficient one for a triple (d, j, k) to be admissible. Ramos’s method yields many
interesting results in lower dimensions, including the admissibility of the triples
(9,3,3), (9,5,2), and (5,1,4). The most interesting special case that still seems
to be out of reach is the triple (4,1,4). The key idea in these proofs is to use, for
this purpose, a specially designed, generalized form of the Borsuk-Ulam theorem
for continuous, “even-odd” maps of the form f: S9! x ... x §¢ 1 - R,

APPLICATIONS AND RELATED RESULTS

According to [Mata], an early interest of computer scientists in partitioning mass
distributions by hyperplanes was stimulated in part by geometric range searching;
cf. Chapter 36 of this Handbook. As noted by Matousek, the classical mass parti-
tioning results were eventually superseded by random sampling and related results.
However, one still wonders about the possible impact of a positive answer to the
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following conjecture (a special case of the conjecture that (4,1,4) is admissible) to
the construction and complexity of geometric algorithms.

CONJECTURE 14.2.7

For each collection of 16 distinct points Ay, ..., A in R?, there exist 4 hyperplanes
Hy,...,Hy such that each of the associated 16 open orthants contains at most one
of the given points.

It is known that the answer to the conjecture is positive if the points are
distributed along a convex curve in R* (a curve in R™ is convex if, like the
moment curve, it intersects each hyperplane in at most m distinct points). This
special case of the conjecture follows [Ram96] from the existence of uniform Gray
codes on 4-dimensional cubes. Recall that a uniform Gray code on a k-dimensional
cube is a Hamiltonian circuit on the graph of all edges of the cube that is balanced
in the sense that it uses the same number of edges from each of k parallel classes.

14.2.5

RADIAL PARTITIONS BY POLYHEDRAL FANS

An old result of R. Buck and E. Buck [BB49] says that for each continuous mass
distribution in the plane, there exist three concurrent lines l1,l»,l5 C R? that
partition R? into six sectors of equal measure. It is natural to search for higher
dimensional analogs of this result.

Suppose that @ C R? is a convex polytope and assume that the origin O € R¢
belongs to the interior int(Q) of Q. Let {F;}¥_, be the collection of all facets of Q.
Let F := fan(Q)) be the associated fan, i.e., F = {C1,...,Cy} where C; = cone(F;)
is the convex closed cone with vertex O generated by Fj.

THEOREM 14.2.8 [Mak01]

Let Q be a reqular dodecahedron with the origin O € R® as its barycenter. Then
for any centrally symmetric, continuous mass distribution p on R3, there exists a
linear map L € GL(3,R) such that

n(L(C1)) = u(L(C2)) = ... = u(L(Cy))-

Makeev actually shows in [MakO01] that L can be found in the set of all matrices
of the form a-t, where ¢ is an upper triangular matrix and a € GL(3,R) is a matrix
given in advance. In an earlier paper (see [Mak98]) he showed that a radial partition
by a fan determined by the facets of a cube always exists for an arbitrary measure in
R%. Moreover, he shows in [Mak01] that a result analogous to Theorem 14.2.8 also
holds for rhombic dodecahedra. Recall that the rhombic dodecahedron Us is the
polytope bounded by twelve planes, each containing an edge of a cube and parallel
to one of the great diagonal planes. A higher dimensional analogue of the rhombic
dodecahedron is the polytope U, in R™ described as the dual of the difference body
of a regular simplex.

PROBLEM 14.2.9

Let T C R"™ be a reqular simplex and QQ := T—T the associated “difference polytope.”
Let U, := Q° be the polytope polar to Q. Clearly U, is a centrally symmetric
polytope with n® + n facets Fy, i = 1,...,n> +n. Let {K@}Zif” be the associated
conical dissection of R", where K; := cone(F};). Is it true that for any continuous
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mass distribution pu on R"™ there exists a nondegenerate affine map A : R" — R"
such that

HAKD) = p(AKS)) = .. = p(A(K 240)) ?

The following result of Vreéica and Zivaljevi¢ is an example of a radial partition
result for a single measure in R™ with ratios prescribed by a positive vector a.

THEOREM 14.2.10 [VZ01]

Let A C R" be a nondegenerate simplex with O € int(A). Suppose that p is a
continuwous mass distribution on R", and let @ = (ay,...,a,) be a given positive
vector such that g + ...+ «,, = 1. Then there exists a vector v € R" such that
w(v+ K;) = a; p(R") for each i = 0,...,n, where F = fan(A) = {K;}*, is the
radial fan associated to A.

14.2.6

EQUIPARTITIONS BY WEDGELIKE CONES

The center transversal theorem is a common generalization of the ham sandwich
theorem and the center point theorem. There is another general statement ex-
tending the ham sandwich theorem that, as a special boundary case, includes the
equipartition case of Theorem 14.2.10.

THEOREM 14.2.11 [VZ92]

Let A := conv({a;}1",) be a regular simplex of dimension m < d and let P := aff A
be its affine hull. Then there is a dissection D(A) = {D;}, of R* into m + 1
wedgelike cones, where D; := P+ & cone(conv({a;};.i))-

CONJECTURE 14.2.12

Let po,...,ur be a family of continuous mass distributions (measures), 0 < k <
d — 1, defined on RY. Then there ezists a (d—k)-dimensional regular simplex A
such that for the corresponding dissection, D(A), for some x € RY, and for all i,j,

(RY

uile +Dj) = du—(ik-l-)l

This conjecture is denoted in [VZ92] by B(d,k). Theorem 14.2.10 implies
B(d,0), and the ham sandwich theorem is B(d,d — 1). The conjecture is also
confirmed in the case B(d,d—2) for all d. Moreover, there exists a natural topolog-
ical conjecture implying B(d, k) that is closely related to the analogous statement
needed for the center transversal theorem. This statement, denoted in [VZ92] by
C(d, k), in the spirit of the CS/TM-scheme, essentially claims that there does not
exists a Zjy1-equivariant map from the Stiefel manifold Vi (R") to the unit sphere
S(V) in an appropriate Zg41-representation V.

14.2.7

PARTITIONS BY CONVEX SETS

CONJECTURE 14.2.13

Let n and d be integers with n,d > 2. Assume that py, ..., g are continuous mass
distributions such that p1(R?) = ... = pq(R?) = n. Then there exists a partition of
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R into n sets C1,...,Cp such that the interiors int(C;) are convex sets and that
wi(C;) =1 for eachi=1,... n.

This conjecture was formulated in [KK99] by A. Kaneko and M. Kano for
the case d = 2. Kaneko and Kano originally formulated the conjecture for finite
sets rather than for continuous mass distributions, but this is not essential. Note
that the case n = 2 is true by the ham sandwich theorem. The case d = 2 was
independently established by S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink,
by T. Sakai, and by H. Ito, H. Uehara, and M. Yokoyama; see [BMO01] for additional
information.

14.2.8

PARTITIONS BY k-FANS IN PRESCRIBED RATIOS

The conjecture of Kaneko and Kano (the case d = 2,n = 3) motivated I. Barany
and J. Matousek in [BM01, BMO02] to study general conical partitions of planar or
spherical measures in prescribed ratios. We assume, in the following statements,
that all measures are continuous mass distributions.

An arrangement of k semilines in the Euclidean (projective) plane or on the
2-sphere is called a k-fan if all semilines start from the same point. A k-fan is an
a-partition for a probability measure p if u(o;) = «; for each i = 1, ..., k, where
{o:}%_, are conical sectors associated with the k-fan and @ = (au, ..., ag) is a given
vector. The set of all @ = (aq,...,a;,) such that for any collection of probability
measures i1, ..., by, there exists a common a-partition by a k-fan is denoted by
A - It was shown in [BMO1] that the interesting cases of the problem of existence
of a-partitions are (k,m) = (2,3),(3,2), (4,2).

CONJECTURE 14.2.14
Suppose that (k,m) is equal to (2,3),(3,2) or (4,2)}. Then o € Ay, if and only if

a;+...+ay, =1 and a; >0 foreach i=1,...m.

The only known elements in 442 are, up to a permutation of coordinates,
(%, %, %, %) and (%, %, %, %) They were discovered by Barany and Matousek by an
ingenious application of the CS/TM scheme [BM01, BM02]. From this Barany and
Matousek deduced that {(1,1,1), (3,1, 1)} U{(£,4,2) | p,q,r € N*,p+q+7 =
5} C A372.

Conjecture 14.2%was confirmed in full in the case (k,m) = (2,3) by R. Zi-
valjevi¢ in [Ziv02]. Building on the CS/TM scheme of Bardny and Matousek,
he deduced the result from the fact that under mild conditions there does not
exist a Q4n-equivariant map f : S — V \ A(«a), where A(a) is a Q4 -invariant,
linear subspace arrangement in a (J4,-representation V, and Q4 is the generalized
quaternion group. This fact is in turn established by showing that an appropriate
obstruction in the group Q4 (Q4,) of Q4,-bordisms does not vanish.

14.2.9

OTHER EQUIPARTITIONS

There are other types of partitions of mass distributions. A “cobweb partition
theorem” of Schulman (see [Mata]) guarantees an equipartition of a plane mass
distribution into 8 pieces by an arrangement of lines resembling a cobweb.
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A result of Paterson (see [Mata]) is an interesting example of a ham sandwich-
type theorem that deals with partitions of lines rather than of points. It says that
for every set of lines in R®, there exist 3 mutually perpendicular planes such that
the interior of each of the resulting octants is intersected by no more than half of
the lines.

14.3

THE PROBLEMS OF BORSUK AND KNASTER

The topological methods used in proofs of measure partition results are actually
applicable to a much wider class of combinatorial and geometric problems. This
phenomenon can be partially explained by the fact that quite different problems,
which on the surface have very little in common (say one of them may be discrete
and the other not), may actually lead to the same or closely related configuration
spaces and test maps. This in turn implies that such problems both follow from
the same general topological principle and that they could, despite appearances, be
classified as “relatives”.

14.3.1

BORSUK’S PROBLEM

Borsuk’s well-known problem about covering sets in R™ with sets of smaller diameter
was solved in the negative by J. Kahn and G. Kalai [KK93] who proved that the
size of a minimal cover is exponential in n; see Chapters 1 and 2 of this Handbook.
This, however, gave a new impetus to the study of “Borsuk numbers” after the old
exponential upper bounds suddenly became more plausible. This may be one of the
reasons why results about “universal covers”, originally used for these estimates,
have received new attention in the last few years.

The following result was proved originally by V. Makeev; see also [HMS, Kup99].
Recall the rhombic dodecahedron Us, the polytope bounded by twelve rhombic
facets, which appeared in Section 14.2.5.

THEOREM 14.3.1 [Mak98§]

A rhombic dodecahedron of width 1 is a universal cover for all sets S C R® of
diameter 1. In other words, each set of diameter 1 in 3-space can be covered by a
rhombic dodecahedron whose opposite faces are 1 unit apart.

Let ¥ C R" be a regular simplex of edge-length 1, with vertices vy,...,v541.
Then the intersection of n(n + 1)/2 parallel strips S;; of width 1, where S;; is
bounded by the (n—1)-planes orthogonal to the segment [v;,v;] passing through
the vertices v; and v; (¢ < j), is a higher dimensional analog of the rhombic dodec-
ahedron. It is easy to see that this is just another description of the polytope U,
that we encountered in Problem 14.2.9.

CONJECTURE 14.3.2 Makeev conjecture [HMS]

The polytope U, is a universal cover in R™. In other words, for each set S C R" of
diameter 1, there exists an isometry I : R" — R"™ such that S C I(Uy,).

The relevance of the Makeev conjecture for the general Borsuk problem is
obvious. The following stronger conjecture is yet another example of a topological
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statement with potentially interesting consequences in discrete and computational
geometry.

CONJECTURE 14.3.3 [HMS]

Let f : S™ ! = R be an odd function, and let ¥, C R™ be a reqular simplex of
edge-length 1, with vertices vy,...,vn4+1. Then there exists an orthogonal linear
map A € SO(n) such that the n(n + 1)/2 hyperplanes H;j, 1 <i < j <n+1, are
concurrent, where

Hij = {z € R" | (z, A(vj — vi)) = f(A(vj —vi))}-

G. Kuperberg showed in [Kup99] that, unlike the cases n = 2 and n = 3, for
n > 4 there is homologically an even number of isometries I : R™ — R™ such that
S C I(U,,) for a given set S of constant width. Kuperberg showed that the Makeev
conjecture can be reduced (essentially in the spirit of the CS/TM-scheme) to the
question of the existence of a I'-equivariant map f : SO(n) — V '\ {0}, where T' is
a group of symmetries of the root system of type A, and the test space V is an
n(n —1)/2-dimensional representation of I'. The fact that such a map exists if and
only if n > 4 may be an indication that the Makeev conjecture is false in higher
dimensions.

14.3.2

KNASTER’S PROBLEM

Knaster’s problem is one of the old conjectures of discrete geometry with a distinct
topological flavor. The conjecture is now known to be false in general, but the
problem remains open in many interesting special cases.

PROBLEM 14.3.4 Knaster’s problem [Knad7|

Given a finite subset S = {s1,...,sk} C S™ of the n-sphere, determine the condi-
tions on k and n so that for each continuous map f: S™ — R™ there will exist an
isometry O € SO(n + 1) with

f(O(s1)) = F(O(s2)) = ... = f(O(s))-

Knaster originally conjectured that such an isometry O always exists if k£ <
n —m + 2. Just as in the case of the Borsuk problem, the first counterexamples
took a long time to appear. V. Makeev, and somewhat later K. Babenko and
S. Bogatyi (see [Che98]), showed that the condition k¥ < n —m + 2 is not sufficient
if the original set S is sufficiently “flat.” In [Che98], W. Chen constructed new
counterexamples confirming that the (original) Knaster conjecture is false for all
n>m> 2.

The fact that Knaster’s conjecture is false in general does not rule out the
possibility that for some special configurations S C S™ the answer is still positive.
The case where S is the set of vertices of a “big” regular simplex in S™ is of special
interest since it directly generalizes the Borsuk-Ulam theorem.

Questions closely related to Knaster’s conjecture are the problems of inscribing
or circumscribing polyhedra to convex bodies in R"; see [HMS, Kup99]. G. Ku-
perberg observed that both the circumscription problem for constant-width bodies
and Knaster’s problem are special cases of the following problem.
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PROBLEM 14.3.5 [Kup99]

Given a finite set T of points on S? 1 and a linear subspace L of the space of all
functions from T to R", decide if, for each continuous function f : S¢~1 — R",
there is an isometry O such that the restriction of f o O to T is an element of L.

14.4

TVERBERG-TYPE THEOREMS AND THEIR
APPLICATIONS

A collection of seven points in the plane can be partitioned into three nonempty,
disjoint subsets so that the corresponding convex hulls have a nonempty intersec-
tion. If we add two more points and color all the points with three colors so that
each color is equally represented, then there exists a partition of this set of nine
colored points into three multicolored three-point sets such that the corresponding
multicolored triangles have a nonempty intersection. Something similar is possible
in 3-space, but this time we need five points of each color in order to guarantee
a partition of this kind. In short, given a constellation of five blue, five red, and
five yellow stars in space, it is always possible to form three vertex-disjoint mul-
ticolored triangles with nonempty intersection. These are the simplest nontrivial
cases of Tverberg-type theorems, which, together with their consequences and most
important applications, are shown in Figure 14.4.1.

Continuous Tverberg Topological index theory
theorem

Affine Tverberg Colored Tverberg Colored Tverberg
theorem theorems, type A theorems, type B

Splitting necklaces Halving hyperplanes and the k-set problem
Common transversals and the Point selections and weak e-nets
Tverberg-Vretica problem Hadwiger-Debrunner (p, g)-problem
Combinatorics of chessboard complexes

FIGURE 14.4.1
Tverberg-type theorems.

GLOSSARY

Tverberg-type problem: A problem in which a finite set A C R? is to be parti-
tioned into nonempty, disjoint pieces Ai,..., Ay, possibly subject to some con-
straints, so that the corresponding convex hulls {conv(4;)}’_, intersect.

Colors: A set of k+1 colors is a collection C = {Cy, ..., Cy} of disjoint subsets of
RY, d > k. A set B C R? is multicolored if it contains a point from each of the
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sets Cy; in this case conv B is called a rainbow simplex (possibly degenerate).
Type A and Type B: Colored Tverberg problems are of type A or type B de-
pending on whether k¥ = d or k < d (resp.), where k + 1 is the number of colors.
Tverberg numbers T (r,d), T(r,k,d): T(r,k,d) is the minimal size of each of
the colors C;, i =0, ..., k, that guarantees that there always exist r intersecting
rainbow simplices. T'(r,d) := T'(r,d, d).

14.4.1 MONOCHROMATIC TVERBERG THEOREMS

THEOREM 14.4.1 Affine Tverberg Theorem

Every set K = {a; };:_01)((“_1) C R* with (d+1)(g—1)+1 elements can be partitioned
into ¢ nonempty, disjoint subsets K,,..., K, so that the corresponding convex hulls
have nonempty intersection:

q
ﬂ conv (K;) #0.
i=1
(The special case ¢ = 2 is Radon’s theorem; see Chapter 4.)

THEOREM 14.4.2 Continuous Tverberg Theorem

Let A™ be an m-dimensional simplex and assume that q is a prime integer. Then
for every continuous map f : AWV 5 R there exist vertex-disjoint faces
At At ¢ AUTDUEFRD gyeh that N, f(AY) £ 0.

APPLICATIONS AND RELATED RESULTS

The affine Tverberg theorem was proved by Helge Tverberg in 1966. The continuous
Tverberg theorem, proved by Barany, Shlosman, and Sziics, reduces to the affine
version if f is an affine (simplicial) map. It is not known if this result remains
true for arbitrary ¢, although several authors have independently confirmed this
if ¢ is a prime power: see [Ziv98] for a historical account. Some of the relevant
references for these two theorems and their applications are [Bar93, Bjo95, Sar92,
Eck93, Vol96, Ziv98, Mat02, Mata).

The following “necklace-splitting theorem” of Noga Alon (see [Mata)) is a very
nice application of the continuous Tverberg theorem.

THEOREM 14.4.3

Assume that an open necklace has ka; beads of colori, 1 <i <t, k> 2. Then it is
possible to cut this necklace at t(k — 1) places and assemble the resulting intervals
into k collections, each containing exactly a; beads of color i.

REMARK 14.4.4

The proof of the necklace-splitting theorem provides a very nice example of an
application of the CS/TM scheme (Section 14.1). A continuous model of a necklace
is an interval [0,1] together with k measurable subsets A;,..., A) representing
“beads” of different colors. It is well known that the configuration space of all
sequences 0 < z7 < ... <z, <1 is the m-dimensional simplex, hence the totality
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of all m-cuts of a necklace is identified with an m-dimensional simplex ¥. Given a
cut ¢ € ¥, the assembling of the resulting subintervals Iy(c), ..., Iy (c) of [0, 1] into
k collections is determined by a function f : [m + 1] — [k]. Hence, a configuration
space associated to the necklace-splitting problem is obtained by gluing together
m-simplices X, one for each function f € Fun([m + 1],[k]). The complex C,,
obtained by this construction turns out, in fact, to be a very important example
of a complex obtained from a simplex by a deleted join operation. The reader
is refereed to [Mata] and [Ziv98] for details about the role of (deleted) joins in
combinatorics.

An interesting connection has emerged recently between ham-sandwich- and
Tverberg-type problems. An example of this is the so-called Tverberg-Vreéica con-
jecture, which incorporates both the center transversal theorem (Theorem 14.2.5)
and the (affine) Tverberg theorem in a single general statement.

CONJECTURE 14.45

Assume that 0 < k < d—1 and let Sy, S1,--.,Sk be a collection of finite sets in R?
of given cardinalities |S;| = (r; —1)(d—k+1)+1, i =0,1,...,k. Then S; can
be split into r; nonempty sets, S},...,S;*, so that for some k-dimensional affine
subspace D C RY, D ﬂconv(Sf) #£0 foralliand j, 0<i<k,1<j<r;.

This conjecture was confirmed in [Ziv99] for the case where both d and k are
odd integers and r; = ¢ for each ¢, where ¢ is an odd prime number. Recently
S. Vreéica confirmed this conjecture also in the case r; = ... =r; = 2 [Vre02].

The expository article [Kal01] is recommended as a source of additional infor-
mation about Tverberg-type theorems not covered here. From among Kalai’s deep
conjectures, beautiful visions, and unexpected possible connections (e.g. with the
4-color theorem), we select the following conjecture.

CONJECTURE 14.4.6 (il Kalai (1974)

Given a set A C R?, let T,.(A) be the set of all points in R? that belong to the convex
hull of v pairwise disjoint subsets of A. By convention let dim(p) = —1. Then

14.4.2

COLORED TVERBERG THEOREMS

Let T'(r,k,d) be the minimal number ¢ so that for every collection of colors C =
{Co,...,Cr} with the property |C;| > t for all i = 0,...,k, there exist r mul-

ticolored sets A; = {a;}fzo, 1 = 1,...,r, that are pairwise disjoint but where
the corresponding rainbow simplices o; := conv A; have a nonempty intersection,
ﬂ:;l )3 7é 0.

The colored Tverberg problem is to establish the existence of, and then to
evaluate or estimate, the integer 7' = T'(r, k,d). The cases k = d and k < d are
related, but there is also an essential difference. In the case k = d, provided t
is large enough, the number of intersecting rainbow simplices can be arbitrarily
large. In the case k < d, for dimension reasons, one cannot expect more than
r < d/(d — k) intersecting k-dimensional rainbow simplices. This is the reason why
colored Tverberg theorems are classified as type A or type B, depending on whether
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k=dork <d.

In the type A case, where T'(r,d, d) is abbreviated simply as T'(r,d), it is easy
to see that a lower bound for this function is r. It is conjectured that this lower
bound is attained:

CONJECTURE 14.4.7 (Type A)

T(r,d) =7 for all r and d.

This conjecture has been confirmed for r = 2 and for d < 2 [B4r93].

It is interesting to note (see Section 14.4.3) that the colored Tverberg problem
(type A) was originally conjectured and designed as a tool for solving important
problems of computational geometry. Note also that the weak form of the conjec-
ture, T'(r,d) < +00, is already far from obvious.

The following theorem of Zivaljevi¢ and Vreéica (see [Bar93, Mata, Ziv98))
provides the best bounds known in the general case. It implies that T'(r,d) < 4r—3
for all r and d.

THEOREM 14.4.8 (Type A)

For every integer r and every collection of d+1 disjoint sets (“colors”) Cy,C4,...,Cq
in RY, each of cardinality at least 4r — 3, there exist r disjoint, multicolored subsets
S; C U?:o C; such that r
ﬂ conv S; # 0.

i=1

If r is a power of a prime number then it suffices to assume that the size of each of
the colors is at least 2r — 1. In other words, T'(r,d) < 2r — 1 if r is a prime power
and T(r,d) < 4r — 3 in the general case.

In the type B case, let us assume that r < d/(d — k), which is a necessary
condition for a colored Tverberg theorem of type B.

CONJECTURE 14.4.9 (Type B)
T(r,k,d) =2r — 1.
There exist examples showing that T'(r, k,d) > 2r — 1.

The following theorem [VZ94, Ziv98] confirms Conjecture 14.4.9 above for the
case of a prime power r.

THEOREM 14.4.10 (Type B)

Let Cy, ...,Cr be a collection of k + 1 disjoint finite sets (“colors”) in R®. Let
r be a prime integer such that r < d/(d — k) and let |C;| =t > 2r — 1. Then
there exist r multicolored k-dimensional simplices S;, i = 1,...,r, that are pairwise
vertex-disjoint such that

r
ﬂ conv S; # ().
i=1
The usual price for using topological (equivariant) methods is the extra as-
sumption that r is a prime or a power of a prime number. On the other hand, the

results obtained by these methods hold in greater generality and include nonlinear
versions of Theorems 14.4.8 and 14.4.10; see [Ziv98] for details and examples.

EXAMPLE 14.4.11
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The simplest instance of Theorem 14.4.10 is the case d = 2, k =1, and r = 2.
Then, in the nonlinear version of this theorem, we recognize the well-known fact
that the complete bipartite graph K3 is not planar. This is one of the earliest
results in topology, already known to Euler, who formulated it as a problem about
three houses and three wells.

1443

APPLICATIONS OF COLORED TVERBERG THEOREMS

Theorem 14.4.8 provided a general bound of the form T'(d + 1,d) < 4d + 1, which
opened the possibility of proving many interesting results in discrete and compu-
tational geometry.

HALVING HYPERPLANES AND THE k-SET PROBLEM

The number hq4(n) of halving hyperplanes of a set of size n in R?, i.e., the number of
essentially distinct placements of a hyperplane that split the set in half, according
to Bardny, Fiiredi, and Lovész (see [Bar93]), satisfies

ha(n) = O(n?=¢?), where eq=T(d+1,d)~(@+1).

POINT SELECTIONS AND WEAK e-NETS

The equivalence of the following statements was established in [ABFK92] before
Theorem 14.4.8 was proved. Considerable progress has since been made in this
area [Mat02], and different combinatorial techniques for proving these statements
have emerged in the meantime.

e Weak colored Tverberg theorem: T'(d+ 1,d) is finite.

e Point selection theorem: There exists a constant s = s4, whose value de-
pends on the bound for T'(d + 1, d), such that any family H of (d+1)-element

subsets of a set X C R of size |H| = p( (Br(ll) contains a pierceable subfam-

ily H' such that |H'| > ps(t‘ifll). (H' is pierceable if (g, conv S # 0.
A >, Bif A > ¢1(d)B + co(d), where ¢;1(d) > 0 and c2(d) are constants
depending only on the dimension d.)

o Weak e-net theorem: For any X C R? there exists a weak e-net F for convex
sets with |F| <4 e(@*D(1=1/9) where s = s4 is as above. (See Chapter 36 for
the notion of e-net; a weak e-net is similar, except that it need not be part
of X.)

e Hitting set theorem: For every 7 > 0 and every X C R? there exists a set
E C R? that misses at most n(g‘lfll) simplices of X and has size |E| <4 n'~%¢,
where s4 is as above.

OTHER RELATED RESULTS

A topological configuration space that arises via the CS/TM-scheme in proofs of
Theorems 14.4.8 and 14.4.10 is the so-called chessboard complex A, ;, which owes
its name to the fact that it can be described as the complex of all nontaking rook
placements on an r X t chessboard. This is an interesting combinatorial object
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that arises independently as the coset complex of the symmetric group, as the
complex of partial matchings in a complete bipartite graph, and as the complex
of all partial injective functions. In light of the fact that the high connectivity
of a configuration space is a property of central importance for applications (cf.
Theorem 14.5.1), chessboard complexes have been studied from this point of view
in numerous papers; see [Ath] and [Wac01] for recent advances and references.

14.5

TOOLS FROM EQUIVARIANT TOPOLOGY

The method of equivariant maps is a versatile tool for proving results in discrete
geometry and combinatorics. For many results these are the only proofs available.
Equivariant maps are typically encountered at the final stage of application of the
CS/TM-scheme (Section 14.1).

GLOSSARY

G-space X, G-action: A group G acts on a space X if each element of G
is a continuous transformation of X and multiplication in G corresponds to
composition of transformations. Formally, a G-action « is a continuous map
a: G x X = X such that a(g, a(h,z)) = a(gh,x). Then X is called a G-space
and a(g, x) is often abbreviated as ¢ - x or gx.

Free G-action: An action is free if g-z = x for some x € X implies g = e, where
e is the unit element in G.

G-equivariant map: A map f: X — Y of two G-spaces X and Y is equivariant
ifforallge Gandz € X, f(g9-z) =g f(z).

Borsuk-Ulam-type theorem: Any theorem establishing the nonexistence of a
G-equivariant map between two G-spaces X and Y.

n-connected space: A path-connected and simply connected space with trivial

homology in dimensions 1,2,...,n. A path-connected space X is simply con-
nected or 1-connected if every closed loop w : S* — X can be deformed to a
point.

The following generalization of the Borsuk-Ulam theorem is the key result used
in proofs of many Tverberg-type statements. Note that if X = §*, YV = §»1
and G = Zs, it specializes to the “odd” form of the Borsuk-Ulam theorem given in
Section 14.2 (following Theorem 14.2.2).

THEOREM 14.5.1

Suppose X and Y are simplicial (more generally CW) complexes equipped with the
free action of a finite group G, and that X is m-connected, where m = dim Y.
Then there does not ezist a G-equivariant map f: X — Y.

Theorem 14.5.1 is strong enough for the majority of applications. Nevertheless,
in some cases more sophisticated tools are needed. A topological index theory is a
complexity theory for G-spaces that allows us to conclude that there does not exist
a G-equivariant map f : X — Y if the G-space Y is of larger complexity than the
G-space X. A measure of complexity of a given G-space is the so-called equivariant
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index Indg(X). In general, an index function is defined on a class of G-spaces,
say all finite G-CW complexes, and takes values in a suitable partially ordered set
2. For example if G = Z, an index function Indgz, (X) is defined as the minimum
integer n such that there exists a Zq-equivariant map f : X — S™. In this case
2 := N is the poset of nonnegative integers. Note that the Borsuk-Ulam theorem
simply states that Indz, (S™) = n.

PROPOSITION 14.5.2 [Mata, Ziv98]

For each nontrivial finite group G, there exists an integer-valued index function
Indg(:) defined on the class of finite, G-simplicial complexes such that

(1) If Indg(X) > Indg(X), then a G-equivariant map f : X =Y does not ezist.

)
(i) If X is (n—1)-connected then Indg(X) > n.
(iii) If X is an n-dimensional, free G-complex then Indg(X) <n.
(iv) Indg(X *Y) <Indg(X) + Inda(Y) + 1, where X Y is the join of spaces.

It is clear that the computation or good estimates of the complexity indices
Indg(X) are essential for applications. Occasionally this can be done even if the
details of construction of the index function are not known. Such a tool for finding
the lower bounds for an index function described in Proposition 14.5.2 is provided
by the following inequality.

PROPOSITION 14.5.3 Sarkaria inequality [Mata, Ziv98]

Let L be a free G-complex and Ly C L a G-invariant, simplicial subcomplex. Let
A(L\ Ly) be the order complex (cf. Chapter 21) of the complementary poset L\ Lyg.
Then

Indg(Lo) > Indg(L) — Indg(A(L\ Lo)) — 1.

In some applications it is more natural, and sometimes essential, to use more
sophisticated partially ordered sets of G-degrees of complexity. A notable example
is the ideal valued index theory of S. Husseini and E. Fadell [FH88], which proved
useful in establishing the existence of equilibrium points in incomplete markets
(mathematical economics).

146 SOURCES AND RELATED MATERIAL

FURTHER READING

The reader will find additional information about applications of topological meth-
ods in discrete geometry and combinatorics, as well as a more comprehensive bib-
liography, in the survey papers [Alo88, B4r93, Bjo95, Eck93, Ste85, Ziv9g8] as well
as in the books [Mat02, Mata).

The reader interested in broader aspects of the topology/computer science in-
teraction is directed to the following sources:
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(1) Both [BEA+99] and [DEG99], surveys of existing applications, may also be

seen as programs offering an insight into future research in computational
topology, identifying some of the most important general research themes in
this field.

(2) The home page of the BioGeometry project, [BioG], also includes informa-

tion (a-shapes, topological persistence, etc.) about the topological aspects of
the problem of designing computational techniques and paradigms for repre-
senting, storing, searching, simulating, analyzing, and visualizing biological
structures.

(3) The CompuTop.org Software Archive (maintained by Nathan Dunfield) is fo-

cused on software for low-dimensional topological computations [Dun].

(4) The Lisp computer program Kenzo [Ser] exemplifies the powerful computa-

tional techniques now available in effective algebraic topology.

(5) For general information about algebraic topology the reader may find the

Web site [WD] of the Hopf Archive and the associated Topology discussion
group (C. Wilkerson, D. Davis) extremely useful.
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Chapter 1: Finite point configurations

Chapter 4: Helly-type theorems and geometric transversals
Chapter 32: Computational topology

Chapter 63: Biological applications of computational topology
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